Measurement-Based Outage Probability Estimation for Mission-Critical Services

An accurate estimation of the service quality that the user will experience along a route can be extremely useful for mission-critical services. It can provide the network with in-advance information on the potential critical areas along the route based on availability and reliability estimations. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.1-1
Hauptverfasser: Lopez, Melisa, Sorensen, Troels B., Kovacs, Istvan Z., Wigard, Jeroen, Mogensen, Preben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 9
creator Lopez, Melisa
Sorensen, Troels B.
Kovacs, Istvan Z.
Wigard, Jeroen
Mogensen, Preben
description An accurate estimation of the service quality that the user will experience along a route can be extremely useful for mission-critical services. It can provide the network with in-advance information on the potential critical areas along the route based on availability and reliability estimations. If such estimation is based on empirical/statistical or site-specific estimations, both of which are typically used for cellular network planning, it will lead to significant uncertainty in the estimation as we demonstrate in this paper. Instead, if estimations are based on previously collected measurements, the uncertainty can be significantly reduced. In this paper, we analyze the achievable accuracy of such a data-driven estimation which aggregates measurements from multiple user equipment (UEs) moving along the same route by averaging the measured signal levels over a route segment. We evaluate the estimation error for both empirical/statistical, site-specific and data-driven estimations for measurements collected in urban areas. Based on the demonstrated advantage of data-driven estimation, and the relevance of including context information that we proved in a previous paper, we discuss and analyze how the estimation error can be reduced even further by predicting the Mean Individual Offset (MIO) that each specific UE will observe with respect to the average. To this end, we propose and evaluate a technique for MIO correction that relies on observing a time series of signal level samples when the UE starts a mission-critical service. By observing 100-300 m of real-time samples along the route results show that the overall estimation error can be reduced from 5-6 dB to 4 dB using MIO correction. Finally, using the obtained results, we illustrate how the signal level estimations can be used to estimate the outage probability along the planned route.
doi_str_mv 10.1109/ACCESS.2021.3138563
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9663206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9663206</ieee_id><doaj_id>oai_doaj_org_article_524904505bb040f2a1e79bebf35d32ff</doaj_id><sourcerecordid>2615515843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ae0e8d5e59ff1ccfda5bcbfb69103f16ef308d886dc581518749e9f888dfa5583</originalsourceid><addsrcrecordid>eNpNUV1rAjEQPEoLFesv8OWgz2eTy21MHu1hP6BiwfY5JHcbiaixyVnw3zf2inRfdhlmZgcmy8aUTCgl8mFW1_PValKSkk4YZQI4u8oGJeWyYMD49b_7NhvFuCFpRIJgOsgWC9TxGHCH-6541BHbfHns9Brz9-CNNm7rulM-j53b6c75fW59yBcuxnQXdXCda_Q2X2H4dg3Gu-zG6m3E0d8eZp9P84_6pXhbPr_Ws7eiYSC6QiNB0QKCtJY2jW01mMZYwyUlzFKOlhHRCsHbBgQFKqaVRGmFEK3VAIINs9fet_V6ow4hhQsn5bVTv4APa6VDirZFBWUlSQUEjCEVsaWmOJUGjWXQstLa5HXfex2C_zpi7NTGH8M-xVclpwAURMUSi_WsJvgYA9rLV0rUuQbV16DONai_GpJq3KscIl4UknNWEs5-AN-yg-4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615515843</pqid></control><display><type>article</type><title>Measurement-Based Outage Probability Estimation for Mission-Critical Services</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lopez, Melisa ; Sorensen, Troels B. ; Kovacs, Istvan Z. ; Wigard, Jeroen ; Mogensen, Preben</creator><creatorcontrib>Lopez, Melisa ; Sorensen, Troels B. ; Kovacs, Istvan Z. ; Wigard, Jeroen ; Mogensen, Preben</creatorcontrib><description>An accurate estimation of the service quality that the user will experience along a route can be extremely useful for mission-critical services. It can provide the network with in-advance information on the potential critical areas along the route based on availability and reliability estimations. If such estimation is based on empirical/statistical or site-specific estimations, both of which are typically used for cellular network planning, it will lead to significant uncertainty in the estimation as we demonstrate in this paper. Instead, if estimations are based on previously collected measurements, the uncertainty can be significantly reduced. In this paper, we analyze the achievable accuracy of such a data-driven estimation which aggregates measurements from multiple user equipment (UEs) moving along the same route by averaging the measured signal levels over a route segment. We evaluate the estimation error for both empirical/statistical, site-specific and data-driven estimations for measurements collected in urban areas. Based on the demonstrated advantage of data-driven estimation, and the relevance of including context information that we proved in a previous paper, we discuss and analyze how the estimation error can be reduced even further by predicting the Mean Individual Offset (MIO) that each specific UE will observe with respect to the average. To this end, we propose and evaluate a technique for MIO correction that relies on observing a time series of signal level samples when the UE starts a mission-critical service. By observing 100-300 m of real-time samples along the route results show that the overall estimation error can be reduced from 5-6 dB to 4 dB using MIO correction. Finally, using the obtained results, we illustrate how the signal level estimations can be used to estimate the outage probability along the planned route.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3138563</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cellular communication ; Data-driven Estimation ; Empirical analysis ; Error analysis ; Error reduction ; Estimation ; Evaluation ; Loss measurement ; LTE Measurements ; Mission critical systems ; Mission-critical Communications ; Network reliability ; Outages ; Power system reliability ; Quality of service ; Reliability ; RSRP Estimation ; Samples ; Servers ; Service Availability ; Service Reliability ; Statistical analysis ; Statistical methods ; Uncertainty ; Urban areas</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-ae0e8d5e59ff1ccfda5bcbfb69103f16ef308d886dc581518749e9f888dfa5583</cites><orcidid>0000-0002-0710-8685 ; 0000-0003-0925-3795 ; 0000-0001-8450-0712 ; 0000-0002-2284-1244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9663206$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lopez, Melisa</creatorcontrib><creatorcontrib>Sorensen, Troels B.</creatorcontrib><creatorcontrib>Kovacs, Istvan Z.</creatorcontrib><creatorcontrib>Wigard, Jeroen</creatorcontrib><creatorcontrib>Mogensen, Preben</creatorcontrib><title>Measurement-Based Outage Probability Estimation for Mission-Critical Services</title><title>IEEE access</title><addtitle>Access</addtitle><description>An accurate estimation of the service quality that the user will experience along a route can be extremely useful for mission-critical services. It can provide the network with in-advance information on the potential critical areas along the route based on availability and reliability estimations. If such estimation is based on empirical/statistical or site-specific estimations, both of which are typically used for cellular network planning, it will lead to significant uncertainty in the estimation as we demonstrate in this paper. Instead, if estimations are based on previously collected measurements, the uncertainty can be significantly reduced. In this paper, we analyze the achievable accuracy of such a data-driven estimation which aggregates measurements from multiple user equipment (UEs) moving along the same route by averaging the measured signal levels over a route segment. We evaluate the estimation error for both empirical/statistical, site-specific and data-driven estimations for measurements collected in urban areas. Based on the demonstrated advantage of data-driven estimation, and the relevance of including context information that we proved in a previous paper, we discuss and analyze how the estimation error can be reduced even further by predicting the Mean Individual Offset (MIO) that each specific UE will observe with respect to the average. To this end, we propose and evaluate a technique for MIO correction that relies on observing a time series of signal level samples when the UE starts a mission-critical service. By observing 100-300 m of real-time samples along the route results show that the overall estimation error can be reduced from 5-6 dB to 4 dB using MIO correction. Finally, using the obtained results, we illustrate how the signal level estimations can be used to estimate the outage probability along the planned route.</description><subject>Cellular communication</subject><subject>Data-driven Estimation</subject><subject>Empirical analysis</subject><subject>Error analysis</subject><subject>Error reduction</subject><subject>Estimation</subject><subject>Evaluation</subject><subject>Loss measurement</subject><subject>LTE Measurements</subject><subject>Mission critical systems</subject><subject>Mission-critical Communications</subject><subject>Network reliability</subject><subject>Outages</subject><subject>Power system reliability</subject><subject>Quality of service</subject><subject>Reliability</subject><subject>RSRP Estimation</subject><subject>Samples</subject><subject>Servers</subject><subject>Service Availability</subject><subject>Service Reliability</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Uncertainty</subject><subject>Urban areas</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rAjEQPEoLFesv8OWgz2eTy21MHu1hP6BiwfY5JHcbiaixyVnw3zf2inRfdhlmZgcmy8aUTCgl8mFW1_PValKSkk4YZQI4u8oGJeWyYMD49b_7NhvFuCFpRIJgOsgWC9TxGHCH-6541BHbfHns9Brz9-CNNm7rulM-j53b6c75fW59yBcuxnQXdXCda_Q2X2H4dg3Gu-zG6m3E0d8eZp9P84_6pXhbPr_Ws7eiYSC6QiNB0QKCtJY2jW01mMZYwyUlzFKOlhHRCsHbBgQFKqaVRGmFEK3VAIINs9fet_V6ow4hhQsn5bVTv4APa6VDirZFBWUlSQUEjCEVsaWmOJUGjWXQstLa5HXfex2C_zpi7NTGH8M-xVclpwAURMUSi_WsJvgYA9rLV0rUuQbV16DONai_GpJq3KscIl4UknNWEs5-AN-yg-4</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Lopez, Melisa</creator><creator>Sorensen, Troels B.</creator><creator>Kovacs, Istvan Z.</creator><creator>Wigard, Jeroen</creator><creator>Mogensen, Preben</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0710-8685</orcidid><orcidid>https://orcid.org/0000-0003-0925-3795</orcidid><orcidid>https://orcid.org/0000-0001-8450-0712</orcidid><orcidid>https://orcid.org/0000-0002-2284-1244</orcidid></search><sort><creationdate>20210101</creationdate><title>Measurement-Based Outage Probability Estimation for Mission-Critical Services</title><author>Lopez, Melisa ; Sorensen, Troels B. ; Kovacs, Istvan Z. ; Wigard, Jeroen ; Mogensen, Preben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ae0e8d5e59ff1ccfda5bcbfb69103f16ef308d886dc581518749e9f888dfa5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cellular communication</topic><topic>Data-driven Estimation</topic><topic>Empirical analysis</topic><topic>Error analysis</topic><topic>Error reduction</topic><topic>Estimation</topic><topic>Evaluation</topic><topic>Loss measurement</topic><topic>LTE Measurements</topic><topic>Mission critical systems</topic><topic>Mission-critical Communications</topic><topic>Network reliability</topic><topic>Outages</topic><topic>Power system reliability</topic><topic>Quality of service</topic><topic>Reliability</topic><topic>RSRP Estimation</topic><topic>Samples</topic><topic>Servers</topic><topic>Service Availability</topic><topic>Service Reliability</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Uncertainty</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Melisa</creatorcontrib><creatorcontrib>Sorensen, Troels B.</creatorcontrib><creatorcontrib>Kovacs, Istvan Z.</creatorcontrib><creatorcontrib>Wigard, Jeroen</creatorcontrib><creatorcontrib>Mogensen, Preben</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, Melisa</au><au>Sorensen, Troels B.</au><au>Kovacs, Istvan Z.</au><au>Wigard, Jeroen</au><au>Mogensen, Preben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement-Based Outage Probability Estimation for Mission-Critical Services</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>An accurate estimation of the service quality that the user will experience along a route can be extremely useful for mission-critical services. It can provide the network with in-advance information on the potential critical areas along the route based on availability and reliability estimations. If such estimation is based on empirical/statistical or site-specific estimations, both of which are typically used for cellular network planning, it will lead to significant uncertainty in the estimation as we demonstrate in this paper. Instead, if estimations are based on previously collected measurements, the uncertainty can be significantly reduced. In this paper, we analyze the achievable accuracy of such a data-driven estimation which aggregates measurements from multiple user equipment (UEs) moving along the same route by averaging the measured signal levels over a route segment. We evaluate the estimation error for both empirical/statistical, site-specific and data-driven estimations for measurements collected in urban areas. Based on the demonstrated advantage of data-driven estimation, and the relevance of including context information that we proved in a previous paper, we discuss and analyze how the estimation error can be reduced even further by predicting the Mean Individual Offset (MIO) that each specific UE will observe with respect to the average. To this end, we propose and evaluate a technique for MIO correction that relies on observing a time series of signal level samples when the UE starts a mission-critical service. By observing 100-300 m of real-time samples along the route results show that the overall estimation error can be reduced from 5-6 dB to 4 dB using MIO correction. Finally, using the obtained results, we illustrate how the signal level estimations can be used to estimate the outage probability along the planned route.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3138563</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0710-8685</orcidid><orcidid>https://orcid.org/0000-0003-0925-3795</orcidid><orcidid>https://orcid.org/0000-0001-8450-0712</orcidid><orcidid>https://orcid.org/0000-0002-2284-1244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021-01, Vol.9, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9663206
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cellular communication
Data-driven Estimation
Empirical analysis
Error analysis
Error reduction
Estimation
Evaluation
Loss measurement
LTE Measurements
Mission critical systems
Mission-critical Communications
Network reliability
Outages
Power system reliability
Quality of service
Reliability
RSRP Estimation
Samples
Servers
Service Availability
Service Reliability
Statistical analysis
Statistical methods
Uncertainty
Urban areas
title Measurement-Based Outage Probability Estimation for Mission-Critical Services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement-Based%20Outage%20Probability%20Estimation%20for%20Mission-Critical%20Services&rft.jtitle=IEEE%20access&rft.au=Lopez,%20Melisa&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3138563&rft_dat=%3Cproquest_ieee_%3E2615515843%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615515843&rft_id=info:pmid/&rft_ieee_id=9663206&rft_doaj_id=oai_doaj_org_article_524904505bb040f2a1e79bebf35d32ff&rfr_iscdi=true