Measurement-Based Outage Probability Estimation for Mission-Critical Services
An accurate estimation of the service quality that the user will experience along a route can be extremely useful for mission-critical services. It can provide the network with in-advance information on the potential critical areas along the route based on availability and reliability estimations. I...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021-01, Vol.9, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 9 |
creator | Lopez, Melisa Sorensen, Troels B. Kovacs, Istvan Z. Wigard, Jeroen Mogensen, Preben |
description | An accurate estimation of the service quality that the user will experience along a route can be extremely useful for mission-critical services. It can provide the network with in-advance information on the potential critical areas along the route based on availability and reliability estimations. If such estimation is based on empirical/statistical or site-specific estimations, both of which are typically used for cellular network planning, it will lead to significant uncertainty in the estimation as we demonstrate in this paper. Instead, if estimations are based on previously collected measurements, the uncertainty can be significantly reduced. In this paper, we analyze the achievable accuracy of such a data-driven estimation which aggregates measurements from multiple user equipment (UEs) moving along the same route by averaging the measured signal levels over a route segment. We evaluate the estimation error for both empirical/statistical, site-specific and data-driven estimations for measurements collected in urban areas. Based on the demonstrated advantage of data-driven estimation, and the relevance of including context information that we proved in a previous paper, we discuss and analyze how the estimation error can be reduced even further by predicting the Mean Individual Offset (MIO) that each specific UE will observe with respect to the average. To this end, we propose and evaluate a technique for MIO correction that relies on observing a time series of signal level samples when the UE starts a mission-critical service. By observing 100-300 m of real-time samples along the route results show that the overall estimation error can be reduced from 5-6 dB to 4 dB using MIO correction. Finally, using the obtained results, we illustrate how the signal level estimations can be used to estimate the outage probability along the planned route. |
doi_str_mv | 10.1109/ACCESS.2021.3138563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9663206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9663206</ieee_id><doaj_id>oai_doaj_org_article_524904505bb040f2a1e79bebf35d32ff</doaj_id><sourcerecordid>2615515843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ae0e8d5e59ff1ccfda5bcbfb69103f16ef308d886dc581518749e9f888dfa5583</originalsourceid><addsrcrecordid>eNpNUV1rAjEQPEoLFesv8OWgz2eTy21MHu1hP6BiwfY5JHcbiaixyVnw3zf2inRfdhlmZgcmy8aUTCgl8mFW1_PValKSkk4YZQI4u8oGJeWyYMD49b_7NhvFuCFpRIJgOsgWC9TxGHCH-6541BHbfHns9Brz9-CNNm7rulM-j53b6c75fW59yBcuxnQXdXCda_Q2X2H4dg3Gu-zG6m3E0d8eZp9P84_6pXhbPr_Ws7eiYSC6QiNB0QKCtJY2jW01mMZYwyUlzFKOlhHRCsHbBgQFKqaVRGmFEK3VAIINs9fet_V6ow4hhQsn5bVTv4APa6VDirZFBWUlSQUEjCEVsaWmOJUGjWXQstLa5HXfex2C_zpi7NTGH8M-xVclpwAURMUSi_WsJvgYA9rLV0rUuQbV16DONai_GpJq3KscIl4UknNWEs5-AN-yg-4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615515843</pqid></control><display><type>article</type><title>Measurement-Based Outage Probability Estimation for Mission-Critical Services</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lopez, Melisa ; Sorensen, Troels B. ; Kovacs, Istvan Z. ; Wigard, Jeroen ; Mogensen, Preben</creator><creatorcontrib>Lopez, Melisa ; Sorensen, Troels B. ; Kovacs, Istvan Z. ; Wigard, Jeroen ; Mogensen, Preben</creatorcontrib><description>An accurate estimation of the service quality that the user will experience along a route can be extremely useful for mission-critical services. It can provide the network with in-advance information on the potential critical areas along the route based on availability and reliability estimations. If such estimation is based on empirical/statistical or site-specific estimations, both of which are typically used for cellular network planning, it will lead to significant uncertainty in the estimation as we demonstrate in this paper. Instead, if estimations are based on previously collected measurements, the uncertainty can be significantly reduced. In this paper, we analyze the achievable accuracy of such a data-driven estimation which aggregates measurements from multiple user equipment (UEs) moving along the same route by averaging the measured signal levels over a route segment. We evaluate the estimation error for both empirical/statistical, site-specific and data-driven estimations for measurements collected in urban areas. Based on the demonstrated advantage of data-driven estimation, and the relevance of including context information that we proved in a previous paper, we discuss and analyze how the estimation error can be reduced even further by predicting the Mean Individual Offset (MIO) that each specific UE will observe with respect to the average. To this end, we propose and evaluate a technique for MIO correction that relies on observing a time series of signal level samples when the UE starts a mission-critical service. By observing 100-300 m of real-time samples along the route results show that the overall estimation error can be reduced from 5-6 dB to 4 dB using MIO correction. Finally, using the obtained results, we illustrate how the signal level estimations can be used to estimate the outage probability along the planned route.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3138563</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cellular communication ; Data-driven Estimation ; Empirical analysis ; Error analysis ; Error reduction ; Estimation ; Evaluation ; Loss measurement ; LTE Measurements ; Mission critical systems ; Mission-critical Communications ; Network reliability ; Outages ; Power system reliability ; Quality of service ; Reliability ; RSRP Estimation ; Samples ; Servers ; Service Availability ; Service Reliability ; Statistical analysis ; Statistical methods ; Uncertainty ; Urban areas</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-ae0e8d5e59ff1ccfda5bcbfb69103f16ef308d886dc581518749e9f888dfa5583</cites><orcidid>0000-0002-0710-8685 ; 0000-0003-0925-3795 ; 0000-0001-8450-0712 ; 0000-0002-2284-1244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9663206$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lopez, Melisa</creatorcontrib><creatorcontrib>Sorensen, Troels B.</creatorcontrib><creatorcontrib>Kovacs, Istvan Z.</creatorcontrib><creatorcontrib>Wigard, Jeroen</creatorcontrib><creatorcontrib>Mogensen, Preben</creatorcontrib><title>Measurement-Based Outage Probability Estimation for Mission-Critical Services</title><title>IEEE access</title><addtitle>Access</addtitle><description>An accurate estimation of the service quality that the user will experience along a route can be extremely useful for mission-critical services. It can provide the network with in-advance information on the potential critical areas along the route based on availability and reliability estimations. If such estimation is based on empirical/statistical or site-specific estimations, both of which are typically used for cellular network planning, it will lead to significant uncertainty in the estimation as we demonstrate in this paper. Instead, if estimations are based on previously collected measurements, the uncertainty can be significantly reduced. In this paper, we analyze the achievable accuracy of such a data-driven estimation which aggregates measurements from multiple user equipment (UEs) moving along the same route by averaging the measured signal levels over a route segment. We evaluate the estimation error for both empirical/statistical, site-specific and data-driven estimations for measurements collected in urban areas. Based on the demonstrated advantage of data-driven estimation, and the relevance of including context information that we proved in a previous paper, we discuss and analyze how the estimation error can be reduced even further by predicting the Mean Individual Offset (MIO) that each specific UE will observe with respect to the average. To this end, we propose and evaluate a technique for MIO correction that relies on observing a time series of signal level samples when the UE starts a mission-critical service. By observing 100-300 m of real-time samples along the route results show that the overall estimation error can be reduced from 5-6 dB to 4 dB using MIO correction. Finally, using the obtained results, we illustrate how the signal level estimations can be used to estimate the outage probability along the planned route.</description><subject>Cellular communication</subject><subject>Data-driven Estimation</subject><subject>Empirical analysis</subject><subject>Error analysis</subject><subject>Error reduction</subject><subject>Estimation</subject><subject>Evaluation</subject><subject>Loss measurement</subject><subject>LTE Measurements</subject><subject>Mission critical systems</subject><subject>Mission-critical Communications</subject><subject>Network reliability</subject><subject>Outages</subject><subject>Power system reliability</subject><subject>Quality of service</subject><subject>Reliability</subject><subject>RSRP Estimation</subject><subject>Samples</subject><subject>Servers</subject><subject>Service Availability</subject><subject>Service Reliability</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Uncertainty</subject><subject>Urban areas</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rAjEQPEoLFesv8OWgz2eTy21MHu1hP6BiwfY5JHcbiaixyVnw3zf2inRfdhlmZgcmy8aUTCgl8mFW1_PValKSkk4YZQI4u8oGJeWyYMD49b_7NhvFuCFpRIJgOsgWC9TxGHCH-6541BHbfHns9Brz9-CNNm7rulM-j53b6c75fW59yBcuxnQXdXCda_Q2X2H4dg3Gu-zG6m3E0d8eZp9P84_6pXhbPr_Ws7eiYSC6QiNB0QKCtJY2jW01mMZYwyUlzFKOlhHRCsHbBgQFKqaVRGmFEK3VAIINs9fet_V6ow4hhQsn5bVTv4APa6VDirZFBWUlSQUEjCEVsaWmOJUGjWXQstLa5HXfex2C_zpi7NTGH8M-xVclpwAURMUSi_WsJvgYA9rLV0rUuQbV16DONai_GpJq3KscIl4UknNWEs5-AN-yg-4</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Lopez, Melisa</creator><creator>Sorensen, Troels B.</creator><creator>Kovacs, Istvan Z.</creator><creator>Wigard, Jeroen</creator><creator>Mogensen, Preben</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0710-8685</orcidid><orcidid>https://orcid.org/0000-0003-0925-3795</orcidid><orcidid>https://orcid.org/0000-0001-8450-0712</orcidid><orcidid>https://orcid.org/0000-0002-2284-1244</orcidid></search><sort><creationdate>20210101</creationdate><title>Measurement-Based Outage Probability Estimation for Mission-Critical Services</title><author>Lopez, Melisa ; Sorensen, Troels B. ; Kovacs, Istvan Z. ; Wigard, Jeroen ; Mogensen, Preben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ae0e8d5e59ff1ccfda5bcbfb69103f16ef308d886dc581518749e9f888dfa5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cellular communication</topic><topic>Data-driven Estimation</topic><topic>Empirical analysis</topic><topic>Error analysis</topic><topic>Error reduction</topic><topic>Estimation</topic><topic>Evaluation</topic><topic>Loss measurement</topic><topic>LTE Measurements</topic><topic>Mission critical systems</topic><topic>Mission-critical Communications</topic><topic>Network reliability</topic><topic>Outages</topic><topic>Power system reliability</topic><topic>Quality of service</topic><topic>Reliability</topic><topic>RSRP Estimation</topic><topic>Samples</topic><topic>Servers</topic><topic>Service Availability</topic><topic>Service Reliability</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Uncertainty</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Melisa</creatorcontrib><creatorcontrib>Sorensen, Troels B.</creatorcontrib><creatorcontrib>Kovacs, Istvan Z.</creatorcontrib><creatorcontrib>Wigard, Jeroen</creatorcontrib><creatorcontrib>Mogensen, Preben</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, Melisa</au><au>Sorensen, Troels B.</au><au>Kovacs, Istvan Z.</au><au>Wigard, Jeroen</au><au>Mogensen, Preben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement-Based Outage Probability Estimation for Mission-Critical Services</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>An accurate estimation of the service quality that the user will experience along a route can be extremely useful for mission-critical services. It can provide the network with in-advance information on the potential critical areas along the route based on availability and reliability estimations. If such estimation is based on empirical/statistical or site-specific estimations, both of which are typically used for cellular network planning, it will lead to significant uncertainty in the estimation as we demonstrate in this paper. Instead, if estimations are based on previously collected measurements, the uncertainty can be significantly reduced. In this paper, we analyze the achievable accuracy of such a data-driven estimation which aggregates measurements from multiple user equipment (UEs) moving along the same route by averaging the measured signal levels over a route segment. We evaluate the estimation error for both empirical/statistical, site-specific and data-driven estimations for measurements collected in urban areas. Based on the demonstrated advantage of data-driven estimation, and the relevance of including context information that we proved in a previous paper, we discuss and analyze how the estimation error can be reduced even further by predicting the Mean Individual Offset (MIO) that each specific UE will observe with respect to the average. To this end, we propose and evaluate a technique for MIO correction that relies on observing a time series of signal level samples when the UE starts a mission-critical service. By observing 100-300 m of real-time samples along the route results show that the overall estimation error can be reduced from 5-6 dB to 4 dB using MIO correction. Finally, using the obtained results, we illustrate how the signal level estimations can be used to estimate the outage probability along the planned route.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3138563</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0710-8685</orcidid><orcidid>https://orcid.org/0000-0003-0925-3795</orcidid><orcidid>https://orcid.org/0000-0001-8450-0712</orcidid><orcidid>https://orcid.org/0000-0002-2284-1244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021-01, Vol.9, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9663206 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cellular communication Data-driven Estimation Empirical analysis Error analysis Error reduction Estimation Evaluation Loss measurement LTE Measurements Mission critical systems Mission-critical Communications Network reliability Outages Power system reliability Quality of service Reliability RSRP Estimation Samples Servers Service Availability Service Reliability Statistical analysis Statistical methods Uncertainty Urban areas |
title | Measurement-Based Outage Probability Estimation for Mission-Critical Services |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement-Based%20Outage%20Probability%20Estimation%20for%20Mission-Critical%20Services&rft.jtitle=IEEE%20access&rft.au=Lopez,%20Melisa&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3138563&rft_dat=%3Cproquest_ieee_%3E2615515843%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615515843&rft_id=info:pmid/&rft_ieee_id=9663206&rft_doaj_id=oai_doaj_org_article_524904505bb040f2a1e79bebf35d32ff&rfr_iscdi=true |