A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis

Aiming at the technical difficulty of marine radar to detect small targets embedded in the sea clutter, this article proposed a three-feature fusion detection method based on singular spectrum analysis. First, considering that the number of coherent pulses used by radar in scanning mode is usually s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-17
Hauptverfasser: Wu, Xijie, Ding, Hao, Liu, Ning-Bo, Guan, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Wu, Xijie
Ding, Hao
Liu, Ning-Bo
Guan, Jian
description Aiming at the technical difficulty of marine radar to detect small targets embedded in the sea clutter, this article proposed a three-feature fusion detection method based on singular spectrum analysis. First, considering that the number of coherent pulses used by radar in scanning mode is usually small (64 or less), this method combines the application of radar historical scan data and current frame data, transfers the feature extraction method from intraframe to interframe, and extracts three features that consist of cumulative major singular value (CMSV), linear degree of second singular vector (LDSSV), and linear degree of third singular vector (LDTSV) from singular space of the cell under test (CUT). Second, in view of the unideal distribution of sea clutter samples, a 3-D concave hull learning algorithm based on the geometry shape of sea clutter samples under the framework of anomaly detection is developed by improving the original convex hull algorithm, and target detection is realized in feature space using this algorithm. Under the same parameter condition, the measured CSIR data verify the two following points: first, the performance of detector using concave hull learning algorithm is better than that of convex hull learning algorithm; second, the detection performance of the proposed detector is obviously better than that of tri-time-frequency (TF)-feature detector, trifeature-based detector, consistency factor detector, and fractal-based detector.
doi_str_mv 10.1109/TGRS.2021.3138488
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9663178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9663178</ieee_id><sourcerecordid>2645245794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ae2fc918507ef2c300aa5898b063caf04fd8131fced1fde5aea7defc5962953d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMoWKs_QLwEPG_N5GM3OdavKlQEt-IxxOykbtl2a7J76L93S4ungeG9YXiEXAObADBzt5h9lBPOOEwECC21PiEjUEpnLJfylIwYmDzj2vBzcpHSijGQCooR-ZrSN-x-2oqGNtJH7NB39WZJy7VrGrpwcYldovWGluho2cfgPNJ7l7Ci7bAc0L5xkZbbwYv9mk43rtmlOl2Ss-CahFfHOSafz0-Lh5ds_j57fZjOM8-N6DKHPHgDWrECA_eCMeeUNvqb5cK7wGSoNAgIHisIFSqHrqgweGVybpSoxJjcHu5uY_vbY-rsqu3j8ESyPJeKS1UYOVBwoHxsU4oY7DbWaxd3Fpjd97P7fnbfzx77Dc7NwakR8Z83eS6g0OIPDV5sMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645245794</pqid></control><display><type>article</type><title>A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Xijie ; Ding, Hao ; Liu, Ning-Bo ; Guan, Jian</creator><creatorcontrib>Wu, Xijie ; Ding, Hao ; Liu, Ning-Bo ; Guan, Jian</creatorcontrib><description>Aiming at the technical difficulty of marine radar to detect small targets embedded in the sea clutter, this article proposed a three-feature fusion detection method based on singular spectrum analysis. First, considering that the number of coherent pulses used by radar in scanning mode is usually small (64 or less), this method combines the application of radar historical scan data and current frame data, transfers the feature extraction method from intraframe to interframe, and extracts three features that consist of cumulative major singular value (CMSV), linear degree of second singular vector (LDSSV), and linear degree of third singular vector (LDTSV) from singular space of the cell under test (CUT). Second, in view of the unideal distribution of sea clutter samples, a 3-D concave hull learning algorithm based on the geometry shape of sea clutter samples under the framework of anomaly detection is developed by improving the original convex hull algorithm, and target detection is realized in feature space using this algorithm. Under the same parameter condition, the measured CSIR data verify the two following points: first, the performance of detector using concave hull learning algorithm is better than that of convex hull learning algorithm; second, the detection performance of the proposed detector is obviously better than that of tri-time-frequency (TF)-feature detector, trifeature-based detector, consistency factor detector, and fractal-based detector.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3138488</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anomalies ; Clutter ; Computational geometry ; Concave hull ; Convexity ; Detection ; Detectors ; Feature extraction ; feature-based detection ; Fractals ; Learning ; Machine learning ; Object detection ; Radar ; sea clutter ; Sea surface ; Sensors ; singular spectrum ; Spectrum analysis ; Surface clutter ; Target detection</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ae2fc918507ef2c300aa5898b063caf04fd8131fced1fde5aea7defc5962953d3</citedby><cites>FETCH-LOGICAL-c293t-ae2fc918507ef2c300aa5898b063caf04fd8131fced1fde5aea7defc5962953d3</cites><orcidid>0000-0001-5255-0184 ; 0000-0001-5453-5244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9663178$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9663178$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Xijie</creatorcontrib><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Liu, Ning-Bo</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><title>A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Aiming at the technical difficulty of marine radar to detect small targets embedded in the sea clutter, this article proposed a three-feature fusion detection method based on singular spectrum analysis. First, considering that the number of coherent pulses used by radar in scanning mode is usually small (64 or less), this method combines the application of radar historical scan data and current frame data, transfers the feature extraction method from intraframe to interframe, and extracts three features that consist of cumulative major singular value (CMSV), linear degree of second singular vector (LDSSV), and linear degree of third singular vector (LDTSV) from singular space of the cell under test (CUT). Second, in view of the unideal distribution of sea clutter samples, a 3-D concave hull learning algorithm based on the geometry shape of sea clutter samples under the framework of anomaly detection is developed by improving the original convex hull algorithm, and target detection is realized in feature space using this algorithm. Under the same parameter condition, the measured CSIR data verify the two following points: first, the performance of detector using concave hull learning algorithm is better than that of convex hull learning algorithm; second, the detection performance of the proposed detector is obviously better than that of tri-time-frequency (TF)-feature detector, trifeature-based detector, consistency factor detector, and fractal-based detector.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Clutter</subject><subject>Computational geometry</subject><subject>Concave hull</subject><subject>Convexity</subject><subject>Detection</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>feature-based detection</subject><subject>Fractals</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Radar</subject><subject>sea clutter</subject><subject>Sea surface</subject><subject>Sensors</subject><subject>singular spectrum</subject><subject>Spectrum analysis</subject><subject>Surface clutter</subject><subject>Target detection</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQQIMoWKs_QLwEPG_N5GM3OdavKlQEt-IxxOykbtl2a7J76L93S4ungeG9YXiEXAObADBzt5h9lBPOOEwECC21PiEjUEpnLJfylIwYmDzj2vBzcpHSijGQCooR-ZrSN-x-2oqGNtJH7NB39WZJy7VrGrpwcYldovWGluho2cfgPNJ7l7Ci7bAc0L5xkZbbwYv9mk43rtmlOl2Ss-CahFfHOSafz0-Lh5ds_j57fZjOM8-N6DKHPHgDWrECA_eCMeeUNvqb5cK7wGSoNAgIHisIFSqHrqgweGVybpSoxJjcHu5uY_vbY-rsqu3j8ESyPJeKS1UYOVBwoHxsU4oY7DbWaxd3Fpjd97P7fnbfzx77Dc7NwakR8Z83eS6g0OIPDV5sMA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wu, Xijie</creator><creator>Ding, Hao</creator><creator>Liu, Ning-Bo</creator><creator>Guan, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5255-0184</orcidid><orcidid>https://orcid.org/0000-0001-5453-5244</orcidid></search><sort><creationdate>2022</creationdate><title>A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis</title><author>Wu, Xijie ; Ding, Hao ; Liu, Ning-Bo ; Guan, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ae2fc918507ef2c300aa5898b063caf04fd8131fced1fde5aea7defc5962953d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Clutter</topic><topic>Computational geometry</topic><topic>Concave hull</topic><topic>Convexity</topic><topic>Detection</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>feature-based detection</topic><topic>Fractals</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Radar</topic><topic>sea clutter</topic><topic>Sea surface</topic><topic>Sensors</topic><topic>singular spectrum</topic><topic>Spectrum analysis</topic><topic>Surface clutter</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xijie</creatorcontrib><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Liu, Ning-Bo</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Xijie</au><au>Ding, Hao</au><au>Liu, Ning-Bo</au><au>Guan, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Aiming at the technical difficulty of marine radar to detect small targets embedded in the sea clutter, this article proposed a three-feature fusion detection method based on singular spectrum analysis. First, considering that the number of coherent pulses used by radar in scanning mode is usually small (64 or less), this method combines the application of radar historical scan data and current frame data, transfers the feature extraction method from intraframe to interframe, and extracts three features that consist of cumulative major singular value (CMSV), linear degree of second singular vector (LDSSV), and linear degree of third singular vector (LDTSV) from singular space of the cell under test (CUT). Second, in view of the unideal distribution of sea clutter samples, a 3-D concave hull learning algorithm based on the geometry shape of sea clutter samples under the framework of anomaly detection is developed by improving the original convex hull algorithm, and target detection is realized in feature space using this algorithm. Under the same parameter condition, the measured CSIR data verify the two following points: first, the performance of detector using concave hull learning algorithm is better than that of convex hull learning algorithm; second, the detection performance of the proposed detector is obviously better than that of tri-time-frequency (TF)-feature detector, trifeature-based detector, consistency factor detector, and fractal-based detector.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3138488</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5255-0184</orcidid><orcidid>https://orcid.org/0000-0001-5453-5244</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9663178
source IEEE Electronic Library (IEL)
subjects Algorithms
Anomalies
Clutter
Computational geometry
Concave hull
Convexity
Detection
Detectors
Feature extraction
feature-based detection
Fractals
Learning
Machine learning
Object detection
Radar
sea clutter
Sea surface
Sensors
singular spectrum
Spectrum analysis
Surface clutter
Target detection
title A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Detecting%20Small%20Targets%20in%20Sea%20Surface%20Based%20on%20Singular%20Spectrum%20Analysis&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wu,%20Xijie&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3138488&rft_dat=%3Cproquest_RIE%3E2645245794%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645245794&rft_id=info:pmid/&rft_ieee_id=9663178&rfr_iscdi=true