A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis
Aiming at the technical difficulty of marine radar to detect small targets embedded in the sea clutter, this article proposed a three-feature fusion detection method based on singular spectrum analysis. First, considering that the number of coherent pulses used by radar in scanning mode is usually s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Wu, Xijie Ding, Hao Liu, Ning-Bo Guan, Jian |
description | Aiming at the technical difficulty of marine radar to detect small targets embedded in the sea clutter, this article proposed a three-feature fusion detection method based on singular spectrum analysis. First, considering that the number of coherent pulses used by radar in scanning mode is usually small (64 or less), this method combines the application of radar historical scan data and current frame data, transfers the feature extraction method from intraframe to interframe, and extracts three features that consist of cumulative major singular value (CMSV), linear degree of second singular vector (LDSSV), and linear degree of third singular vector (LDTSV) from singular space of the cell under test (CUT). Second, in view of the unideal distribution of sea clutter samples, a 3-D concave hull learning algorithm based on the geometry shape of sea clutter samples under the framework of anomaly detection is developed by improving the original convex hull algorithm, and target detection is realized in feature space using this algorithm. Under the same parameter condition, the measured CSIR data verify the two following points: first, the performance of detector using concave hull learning algorithm is better than that of convex hull learning algorithm; second, the detection performance of the proposed detector is obviously better than that of tri-time-frequency (TF)-feature detector, trifeature-based detector, consistency factor detector, and fractal-based detector. |
doi_str_mv | 10.1109/TGRS.2021.3138488 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9663178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9663178</ieee_id><sourcerecordid>2645245794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ae2fc918507ef2c300aa5898b063caf04fd8131fced1fde5aea7defc5962953d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMoWKs_QLwEPG_N5GM3OdavKlQEt-IxxOykbtl2a7J76L93S4ungeG9YXiEXAObADBzt5h9lBPOOEwECC21PiEjUEpnLJfylIwYmDzj2vBzcpHSijGQCooR-ZrSN-x-2oqGNtJH7NB39WZJy7VrGrpwcYldovWGluho2cfgPNJ7l7Ci7bAc0L5xkZbbwYv9mk43rtmlOl2Ss-CahFfHOSafz0-Lh5ds_j57fZjOM8-N6DKHPHgDWrECA_eCMeeUNvqb5cK7wGSoNAgIHisIFSqHrqgweGVybpSoxJjcHu5uY_vbY-rsqu3j8ESyPJeKS1UYOVBwoHxsU4oY7DbWaxd3Fpjd97P7fnbfzx77Dc7NwakR8Z83eS6g0OIPDV5sMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645245794</pqid></control><display><type>article</type><title>A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Xijie ; Ding, Hao ; Liu, Ning-Bo ; Guan, Jian</creator><creatorcontrib>Wu, Xijie ; Ding, Hao ; Liu, Ning-Bo ; Guan, Jian</creatorcontrib><description>Aiming at the technical difficulty of marine radar to detect small targets embedded in the sea clutter, this article proposed a three-feature fusion detection method based on singular spectrum analysis. First, considering that the number of coherent pulses used by radar in scanning mode is usually small (64 or less), this method combines the application of radar historical scan data and current frame data, transfers the feature extraction method from intraframe to interframe, and extracts three features that consist of cumulative major singular value (CMSV), linear degree of second singular vector (LDSSV), and linear degree of third singular vector (LDTSV) from singular space of the cell under test (CUT). Second, in view of the unideal distribution of sea clutter samples, a 3-D concave hull learning algorithm based on the geometry shape of sea clutter samples under the framework of anomaly detection is developed by improving the original convex hull algorithm, and target detection is realized in feature space using this algorithm. Under the same parameter condition, the measured CSIR data verify the two following points: first, the performance of detector using concave hull learning algorithm is better than that of convex hull learning algorithm; second, the detection performance of the proposed detector is obviously better than that of tri-time-frequency (TF)-feature detector, trifeature-based detector, consistency factor detector, and fractal-based detector.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3138488</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anomalies ; Clutter ; Computational geometry ; Concave hull ; Convexity ; Detection ; Detectors ; Feature extraction ; feature-based detection ; Fractals ; Learning ; Machine learning ; Object detection ; Radar ; sea clutter ; Sea surface ; Sensors ; singular spectrum ; Spectrum analysis ; Surface clutter ; Target detection</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ae2fc918507ef2c300aa5898b063caf04fd8131fced1fde5aea7defc5962953d3</citedby><cites>FETCH-LOGICAL-c293t-ae2fc918507ef2c300aa5898b063caf04fd8131fced1fde5aea7defc5962953d3</cites><orcidid>0000-0001-5255-0184 ; 0000-0001-5453-5244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9663178$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9663178$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Xijie</creatorcontrib><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Liu, Ning-Bo</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><title>A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Aiming at the technical difficulty of marine radar to detect small targets embedded in the sea clutter, this article proposed a three-feature fusion detection method based on singular spectrum analysis. First, considering that the number of coherent pulses used by radar in scanning mode is usually small (64 or less), this method combines the application of radar historical scan data and current frame data, transfers the feature extraction method from intraframe to interframe, and extracts three features that consist of cumulative major singular value (CMSV), linear degree of second singular vector (LDSSV), and linear degree of third singular vector (LDTSV) from singular space of the cell under test (CUT). Second, in view of the unideal distribution of sea clutter samples, a 3-D concave hull learning algorithm based on the geometry shape of sea clutter samples under the framework of anomaly detection is developed by improving the original convex hull algorithm, and target detection is realized in feature space using this algorithm. Under the same parameter condition, the measured CSIR data verify the two following points: first, the performance of detector using concave hull learning algorithm is better than that of convex hull learning algorithm; second, the detection performance of the proposed detector is obviously better than that of tri-time-frequency (TF)-feature detector, trifeature-based detector, consistency factor detector, and fractal-based detector.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Clutter</subject><subject>Computational geometry</subject><subject>Concave hull</subject><subject>Convexity</subject><subject>Detection</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>feature-based detection</subject><subject>Fractals</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Radar</subject><subject>sea clutter</subject><subject>Sea surface</subject><subject>Sensors</subject><subject>singular spectrum</subject><subject>Spectrum analysis</subject><subject>Surface clutter</subject><subject>Target detection</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQQIMoWKs_QLwEPG_N5GM3OdavKlQEt-IxxOykbtl2a7J76L93S4ungeG9YXiEXAObADBzt5h9lBPOOEwECC21PiEjUEpnLJfylIwYmDzj2vBzcpHSijGQCooR-ZrSN-x-2oqGNtJH7NB39WZJy7VrGrpwcYldovWGluho2cfgPNJ7l7Ci7bAc0L5xkZbbwYv9mk43rtmlOl2Ss-CahFfHOSafz0-Lh5ds_j57fZjOM8-N6DKHPHgDWrECA_eCMeeUNvqb5cK7wGSoNAgIHisIFSqHrqgweGVybpSoxJjcHu5uY_vbY-rsqu3j8ESyPJeKS1UYOVBwoHxsU4oY7DbWaxd3Fpjd97P7fnbfzx77Dc7NwakR8Z83eS6g0OIPDV5sMA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wu, Xijie</creator><creator>Ding, Hao</creator><creator>Liu, Ning-Bo</creator><creator>Guan, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5255-0184</orcidid><orcidid>https://orcid.org/0000-0001-5453-5244</orcidid></search><sort><creationdate>2022</creationdate><title>A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis</title><author>Wu, Xijie ; Ding, Hao ; Liu, Ning-Bo ; Guan, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ae2fc918507ef2c300aa5898b063caf04fd8131fced1fde5aea7defc5962953d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Clutter</topic><topic>Computational geometry</topic><topic>Concave hull</topic><topic>Convexity</topic><topic>Detection</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>feature-based detection</topic><topic>Fractals</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Radar</topic><topic>sea clutter</topic><topic>Sea surface</topic><topic>Sensors</topic><topic>singular spectrum</topic><topic>Spectrum analysis</topic><topic>Surface clutter</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xijie</creatorcontrib><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Liu, Ning-Bo</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Xijie</au><au>Ding, Hao</au><au>Liu, Ning-Bo</au><au>Guan, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Aiming at the technical difficulty of marine radar to detect small targets embedded in the sea clutter, this article proposed a three-feature fusion detection method based on singular spectrum analysis. First, considering that the number of coherent pulses used by radar in scanning mode is usually small (64 or less), this method combines the application of radar historical scan data and current frame data, transfers the feature extraction method from intraframe to interframe, and extracts three features that consist of cumulative major singular value (CMSV), linear degree of second singular vector (LDSSV), and linear degree of third singular vector (LDTSV) from singular space of the cell under test (CUT). Second, in view of the unideal distribution of sea clutter samples, a 3-D concave hull learning algorithm based on the geometry shape of sea clutter samples under the framework of anomaly detection is developed by improving the original convex hull algorithm, and target detection is realized in feature space using this algorithm. Under the same parameter condition, the measured CSIR data verify the two following points: first, the performance of detector using concave hull learning algorithm is better than that of convex hull learning algorithm; second, the detection performance of the proposed detector is obviously better than that of tri-time-frequency (TF)-feature detector, trifeature-based detector, consistency factor detector, and fractal-based detector.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3138488</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5255-0184</orcidid><orcidid>https://orcid.org/0000-0001-5453-5244</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9663178 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anomalies Clutter Computational geometry Concave hull Convexity Detection Detectors Feature extraction feature-based detection Fractals Learning Machine learning Object detection Radar sea clutter Sea surface Sensors singular spectrum Spectrum analysis Surface clutter Target detection |
title | A Method for Detecting Small Targets in Sea Surface Based on Singular Spectrum Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Detecting%20Small%20Targets%20in%20Sea%20Surface%20Based%20on%20Singular%20Spectrum%20Analysis&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wu,%20Xijie&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3138488&rft_dat=%3Cproquest_RIE%3E2645245794%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645245794&rft_id=info:pmid/&rft_ieee_id=9663178&rfr_iscdi=true |