H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks
Although spiking neural networks (SNNs) take benefits from the bioplausible neural modeling, the low accuracy under the common local synaptic plasticity learning rules limits their application in many practical tasks. Recently, an emerging SNN supervised learning algorithm inspired by backpropagatio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2022-11, Vol.41 (11), p.4782-4796 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4796 |
---|---|
container_issue | 11 |
container_start_page | 4782 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 41 |
creator | Liang, Ling Qu, Zheng Chen, Zhaodong Tu, Fengbin Wu, Yujie Deng, Lei Li, Guoqi Li, Peng Xie, Yuan |
description | Although spiking neural networks (SNNs) take benefits from the bioplausible neural modeling, the low accuracy under the common local synaptic plasticity learning rules limits their application in many practical tasks. Recently, an emerging SNN supervised learning algorithm inspired by backpropagation through time (BPTT) from the domain of artificial neural networks (ANNs) has successfully boosted the accuracy of SNNs, and helped improve the practicability of SNNs. However, current general-purpose processors suffer from low efficiency when performing BPTT for SNNs due to the ANN-tailored optimization. On the other hand, current neuromorphic chips cannot support BPTT because they mainly adopt local synaptic plasticity rules for simplified implementation. In this work, we propose H2Learn, a novel architecture that can achieve high efficiency for BPTT-based SNN learning, which ensures high accuracy of SNNs. At the beginning, we characterized the behaviors of BPTT-based SNN learning. Benefited from the binary spike-based computation in the forward pass and weight update, we first design look-up table (LUT)-based processing elements in the forward engine and weight update engine to make accumulations implicit and to fuse the computations of multiple input points. Second, benefited from the rich sparsity in the backward pass, we design a dual-sparsity-aware backward engine, which exploits both input and output sparsity. Finally, we apply a pipeline optimization between different engines to build an end-to-end solution for the BPTT-based SNN learning. Compared with the modern NVIDIA V100 GPU, H2Learn achieves 7.38\times area saving, 5.74-10.20\times speedup, and 5.25-7.12\times energy saving on several benchmark datasets. |
doi_str_mv | 10.1109/TCAD.2021.3138347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9662447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9662447</ieee_id><sourcerecordid>2728572168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6c006341c55e57c903ed6ffa525bc43c1fd98249a44357ba1e281f6f668318243</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwseN6ayd-Nt1KrFYoerHgMaZrUtHW3Jluk395sKx6Gx8z83gw8hK4BDwCwupuNhg8DggkMKNCKMnmCeqCoLBlwOEU9TGRVYizxObpIaYUxME5UD31MyNSZWN8Xk7D8LMfeBxtcbffFYRzqZTG01m1cNG0TC5_rAObhLpqMvW3DuqNeXO43WdqfJq7TJTrzZpPc1Z_20fvjeDaalNPXp-fRcFpaomhbCouxoAws545LqzB1C-G94YTPLaMW_EJVhCnDGOVybsCRCrzwQlQU8oL20e3x7jY23zuXWr1qdrHOLzWRpOKSQEb7CI6UjU1K0Xm9jeHLxL0GrLv8dJef7vLTf_llz83RE5xz_7wSgrC8_QX_eWpF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728572168</pqid></control><display><type>article</type><title>H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Ling ; Qu, Zheng ; Chen, Zhaodong ; Tu, Fengbin ; Wu, Yujie ; Deng, Lei ; Li, Guoqi ; Li, Peng ; Xie, Yuan</creator><creatorcontrib>Liang, Ling ; Qu, Zheng ; Chen, Zhaodong ; Tu, Fengbin ; Wu, Yujie ; Deng, Lei ; Li, Guoqi ; Li, Peng ; Xie, Yuan</creatorcontrib><description><![CDATA[Although spiking neural networks (SNNs) take benefits from the bioplausible neural modeling, the low accuracy under the common local synaptic plasticity learning rules limits their application in many practical tasks. Recently, an emerging SNN supervised learning algorithm inspired by backpropagation through time (BPTT) from the domain of artificial neural networks (ANNs) has successfully boosted the accuracy of SNNs, and helped improve the practicability of SNNs. However, current general-purpose processors suffer from low efficiency when performing BPTT for SNNs due to the ANN-tailored optimization. On the other hand, current neuromorphic chips cannot support BPTT because they mainly adopt local synaptic plasticity rules for simplified implementation. In this work, we propose H2Learn, a novel architecture that can achieve high efficiency for BPTT-based SNN learning, which ensures high accuracy of SNNs. At the beginning, we characterized the behaviors of BPTT-based SNN learning. Benefited from the binary spike-based computation in the forward pass and weight update, we first design look-up table (LUT)-based processing elements in the forward engine and weight update engine to make accumulations implicit and to fuse the computations of multiple input points. Second, benefited from the rich sparsity in the backward pass, we design a dual-sparsity-aware backward engine, which exploits both input and output sparsity. Finally, we apply a pipeline optimization between different engines to build an end-to-end solution for the BPTT-based SNN learning. Compared with the modern NVIDIA V100 GPU, H2Learn achieves <inline-formula> <tex-math notation="LaTeX">7.38\times </tex-math></inline-formula> area saving, <inline-formula> <tex-math notation="LaTeX">5.74-10.20\times </tex-math></inline-formula> speedup, and <inline-formula> <tex-math notation="LaTeX">5.25-7.12\times </tex-math></inline-formula> energy saving on several benchmark datasets.]]></description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2021.3138347</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Back propagation networks ; Biological neural networks ; Convolutional neural networks ; Efficiency ; Engines ; Lookup tables ; Machine learning ; Neural networks ; Neuromorphic device ; Neuromorphics ; Neurons ; Optimization ; Sparsity ; Spiking ; spiking neural network (SNN) ; supervised training ; Training</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2022-11, Vol.41 (11), p.4782-4796</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6c006341c55e57c903ed6ffa525bc43c1fd98249a44357ba1e281f6f668318243</citedby><cites>FETCH-LOGICAL-c293t-6c006341c55e57c903ed6ffa525bc43c1fd98249a44357ba1e281f6f668318243</cites><orcidid>0000-0003-2228-8829 ; 0000-0001-9601-4586 ; 0000-0003-3548-4589 ; 0000-0001-6574-0649 ; 0000-0002-8994-431X ; 0000-0003-2093-1788 ; 0000-0002-8534-6494 ; 0000-0002-5172-9411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9662447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9662447$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Ling</creatorcontrib><creatorcontrib>Qu, Zheng</creatorcontrib><creatorcontrib>Chen, Zhaodong</creatorcontrib><creatorcontrib>Tu, Fengbin</creatorcontrib><creatorcontrib>Wu, Yujie</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Li, Guoqi</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Xie, Yuan</creatorcontrib><title>H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description><![CDATA[Although spiking neural networks (SNNs) take benefits from the bioplausible neural modeling, the low accuracy under the common local synaptic plasticity learning rules limits their application in many practical tasks. Recently, an emerging SNN supervised learning algorithm inspired by backpropagation through time (BPTT) from the domain of artificial neural networks (ANNs) has successfully boosted the accuracy of SNNs, and helped improve the practicability of SNNs. However, current general-purpose processors suffer from low efficiency when performing BPTT for SNNs due to the ANN-tailored optimization. On the other hand, current neuromorphic chips cannot support BPTT because they mainly adopt local synaptic plasticity rules for simplified implementation. In this work, we propose H2Learn, a novel architecture that can achieve high efficiency for BPTT-based SNN learning, which ensures high accuracy of SNNs. At the beginning, we characterized the behaviors of BPTT-based SNN learning. Benefited from the binary spike-based computation in the forward pass and weight update, we first design look-up table (LUT)-based processing elements in the forward engine and weight update engine to make accumulations implicit and to fuse the computations of multiple input points. Second, benefited from the rich sparsity in the backward pass, we design a dual-sparsity-aware backward engine, which exploits both input and output sparsity. Finally, we apply a pipeline optimization between different engines to build an end-to-end solution for the BPTT-based SNN learning. Compared with the modern NVIDIA V100 GPU, H2Learn achieves <inline-formula> <tex-math notation="LaTeX">7.38\times </tex-math></inline-formula> area saving, <inline-formula> <tex-math notation="LaTeX">5.74-10.20\times </tex-math></inline-formula> speedup, and <inline-formula> <tex-math notation="LaTeX">5.25-7.12\times </tex-math></inline-formula> energy saving on several benchmark datasets.]]></description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Biological neural networks</subject><subject>Convolutional neural networks</subject><subject>Efficiency</subject><subject>Engines</subject><subject>Lookup tables</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neuromorphic device</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Sparsity</subject><subject>Spiking</subject><subject>spiking neural network (SNN)</subject><subject>supervised training</subject><subject>Training</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwseN6ayd-Nt1KrFYoerHgMaZrUtHW3Jluk395sKx6Gx8z83gw8hK4BDwCwupuNhg8DggkMKNCKMnmCeqCoLBlwOEU9TGRVYizxObpIaYUxME5UD31MyNSZWN8Xk7D8LMfeBxtcbffFYRzqZTG01m1cNG0TC5_rAObhLpqMvW3DuqNeXO43WdqfJq7TJTrzZpPc1Z_20fvjeDaalNPXp-fRcFpaomhbCouxoAws545LqzB1C-G94YTPLaMW_EJVhCnDGOVybsCRCrzwQlQU8oL20e3x7jY23zuXWr1qdrHOLzWRpOKSQEb7CI6UjU1K0Xm9jeHLxL0GrLv8dJef7vLTf_llz83RE5xz_7wSgrC8_QX_eWpF</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Liang, Ling</creator><creator>Qu, Zheng</creator><creator>Chen, Zhaodong</creator><creator>Tu, Fengbin</creator><creator>Wu, Yujie</creator><creator>Deng, Lei</creator><creator>Li, Guoqi</creator><creator>Li, Peng</creator><creator>Xie, Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2228-8829</orcidid><orcidid>https://orcid.org/0000-0001-9601-4586</orcidid><orcidid>https://orcid.org/0000-0003-3548-4589</orcidid><orcidid>https://orcid.org/0000-0001-6574-0649</orcidid><orcidid>https://orcid.org/0000-0002-8994-431X</orcidid><orcidid>https://orcid.org/0000-0003-2093-1788</orcidid><orcidid>https://orcid.org/0000-0002-8534-6494</orcidid><orcidid>https://orcid.org/0000-0002-5172-9411</orcidid></search><sort><creationdate>20221101</creationdate><title>H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks</title><author>Liang, Ling ; Qu, Zheng ; Chen, Zhaodong ; Tu, Fengbin ; Wu, Yujie ; Deng, Lei ; Li, Guoqi ; Li, Peng ; Xie, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6c006341c55e57c903ed6ffa525bc43c1fd98249a44357ba1e281f6f668318243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Biological neural networks</topic><topic>Convolutional neural networks</topic><topic>Efficiency</topic><topic>Engines</topic><topic>Lookup tables</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neuromorphic device</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Sparsity</topic><topic>Spiking</topic><topic>spiking neural network (SNN)</topic><topic>supervised training</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Ling</creatorcontrib><creatorcontrib>Qu, Zheng</creatorcontrib><creatorcontrib>Chen, Zhaodong</creatorcontrib><creatorcontrib>Tu, Fengbin</creatorcontrib><creatorcontrib>Wu, Yujie</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Li, Guoqi</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Xie, Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Ling</au><au>Qu, Zheng</au><au>Chen, Zhaodong</au><au>Tu, Fengbin</au><au>Wu, Yujie</au><au>Deng, Lei</au><au>Li, Guoqi</au><au>Li, Peng</au><au>Xie, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>41</volume><issue>11</issue><spage>4782</spage><epage>4796</epage><pages>4782-4796</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract><![CDATA[Although spiking neural networks (SNNs) take benefits from the bioplausible neural modeling, the low accuracy under the common local synaptic plasticity learning rules limits their application in many practical tasks. Recently, an emerging SNN supervised learning algorithm inspired by backpropagation through time (BPTT) from the domain of artificial neural networks (ANNs) has successfully boosted the accuracy of SNNs, and helped improve the practicability of SNNs. However, current general-purpose processors suffer from low efficiency when performing BPTT for SNNs due to the ANN-tailored optimization. On the other hand, current neuromorphic chips cannot support BPTT because they mainly adopt local synaptic plasticity rules for simplified implementation. In this work, we propose H2Learn, a novel architecture that can achieve high efficiency for BPTT-based SNN learning, which ensures high accuracy of SNNs. At the beginning, we characterized the behaviors of BPTT-based SNN learning. Benefited from the binary spike-based computation in the forward pass and weight update, we first design look-up table (LUT)-based processing elements in the forward engine and weight update engine to make accumulations implicit and to fuse the computations of multiple input points. Second, benefited from the rich sparsity in the backward pass, we design a dual-sparsity-aware backward engine, which exploits both input and output sparsity. Finally, we apply a pipeline optimization between different engines to build an end-to-end solution for the BPTT-based SNN learning. Compared with the modern NVIDIA V100 GPU, H2Learn achieves <inline-formula> <tex-math notation="LaTeX">7.38\times </tex-math></inline-formula> area saving, <inline-formula> <tex-math notation="LaTeX">5.74-10.20\times </tex-math></inline-formula> speedup, and <inline-formula> <tex-math notation="LaTeX">5.25-7.12\times </tex-math></inline-formula> energy saving on several benchmark datasets.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2021.3138347</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2228-8829</orcidid><orcidid>https://orcid.org/0000-0001-9601-4586</orcidid><orcidid>https://orcid.org/0000-0003-3548-4589</orcidid><orcidid>https://orcid.org/0000-0001-6574-0649</orcidid><orcidid>https://orcid.org/0000-0002-8994-431X</orcidid><orcidid>https://orcid.org/0000-0003-2093-1788</orcidid><orcidid>https://orcid.org/0000-0002-8534-6494</orcidid><orcidid>https://orcid.org/0000-0002-5172-9411</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2022-11, Vol.41 (11), p.4782-4796 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_ieee_primary_9662447 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Artificial neural networks Back propagation networks Biological neural networks Convolutional neural networks Efficiency Engines Lookup tables Machine learning Neural networks Neuromorphic device Neuromorphics Neurons Optimization Sparsity Spiking spiking neural network (SNN) supervised training Training |
title | H2Learn: High-Efficiency Learning Accelerator for High-Accuracy Spiking Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H2Learn:%20High-Efficiency%20Learning%20Accelerator%20for%20High-Accuracy%20Spiking%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Liang,%20Ling&rft.date=2022-11-01&rft.volume=41&rft.issue=11&rft.spage=4782&rft.epage=4796&rft.pages=4782-4796&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2021.3138347&rft_dat=%3Cproquest_RIE%3E2728572168%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728572168&rft_id=info:pmid/&rft_ieee_id=9662447&rfr_iscdi=true |