Fast Cooperative Trajectory Generation of Unmanned Aerial Vehicles Using a Bezier Curve-Based Shaping Method

This study uses a Bezier curve-based shaping (BCBS) approach based on the dynamic model to quickly generate 3D cooperative trajectories for unmanned aerial vehicles (UAVs). It can facilitate the solution of the flight trajectory problem that occurs after the reallocation of mission points. Trajector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1626-1636
Hauptverfasser: Yu, Ze, Qi, Naiming, Huo, Mingying, Fan, Zichen, Yao, Weiran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1636
container_issue
container_start_page 1626
container_title IEEE access
container_volume 10
creator Yu, Ze
Qi, Naiming
Huo, Mingying
Fan, Zichen
Yao, Weiran
description This study uses a Bezier curve-based shaping (BCBS) approach based on the dynamic model to quickly generate 3D cooperative trajectories for unmanned aerial vehicles (UAVs). It can facilitate the solution of the flight trajectory problem that occurs after the reallocation of mission points. Trajectory coordinates are expanded based on the Bezier curves that naturally satisfy boundary conditions (BCs); trajectories with the minimum flight time and those satisfying the dynamic constraints and collision-free conditions can be obtained by adjusting the Bezier coefficients. A three-UAV flight simulation is carried out to verify the effectiveness of the proposed method. Further, the performance of the proposed method is compared with that of the Gauss pseudospectral method (GPM). The simulation results of the BCBS method are used as the initial values for GPM optimization. It is demonstrated that the BCBS method requires a lower computation time than the direct solver, which is only 0.07% of the latter, and obtains similar optimization results (3.34% difference). This is considerably important for the rapid generation of optimized trajectories with the limited computing power of onboard computers. Furthermore, this method is expected to achieve online collaborative trajectory generation for multiple UAVs in view of its high computational efficiency.
doi_str_mv 10.1109/ACCESS.2021.3136874
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9656729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9656729</ieee_id><doaj_id>oai_doaj_org_article_7c349ec59fed4550868c8fae59a6017e</doaj_id><sourcerecordid>2617499401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2700151be665b8a2a16b06e51d427aeb9fdf19a7d06980b767c4c907277052d23</originalsourceid><addsrcrecordid>eNpNUcFOwzAMrRBITMAX7BKJc0eSNklzHBWDSUMctnGN3NRlnbZmJN0k-HraFSF8sfX83rOlF0VjRieMUf0wzfOn5XLCKWeThCUyU-lFNOJM6jgRibz8N19HdyFsaVdZBwk1inYzCC3JnTugh7Y-IVl52KJtnf8iz9icUdcQV5F1s4emwZJM0dewI--4qe0OA1mHuvkgQB7xu0ZP8qM_YfwIoaMuN3Dol6_Yblx5G11VsAt499tvovXsaZW_xIu353k-XcQ2pVkbc0UpE6xAKUWRAQcmCypRsDLlCrDQVVkxDaqkUme0UFLZ1GqquFJU8JInN9F88C0dbM3B13vwX8ZBbc6A8x8GfNs_b5RNUo1W6ArLVAiaycxmFaDQIClT2HndD14H7z6PGFqzdUffdO8bLplKtU4p61jJwLLeheCx-rvKqOlTMkNKpk_J_KbUqcaDqkbEP4WWQiqukx92Hozo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617499401</pqid></control><display><type>article</type><title>Fast Cooperative Trajectory Generation of Unmanned Aerial Vehicles Using a Bezier Curve-Based Shaping Method</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yu, Ze ; Qi, Naiming ; Huo, Mingying ; Fan, Zichen ; Yao, Weiran</creator><creatorcontrib>Yu, Ze ; Qi, Naiming ; Huo, Mingying ; Fan, Zichen ; Yao, Weiran</creatorcontrib><description>This study uses a Bezier curve-based shaping (BCBS) approach based on the dynamic model to quickly generate 3D cooperative trajectories for unmanned aerial vehicles (UAVs). It can facilitate the solution of the flight trajectory problem that occurs after the reallocation of mission points. Trajectory coordinates are expanded based on the Bezier curves that naturally satisfy boundary conditions (BCs); trajectories with the minimum flight time and those satisfying the dynamic constraints and collision-free conditions can be obtained by adjusting the Bezier coefficients. A three-UAV flight simulation is carried out to verify the effectiveness of the proposed method. Further, the performance of the proposed method is compared with that of the Gauss pseudospectral method (GPM). The simulation results of the BCBS method are used as the initial values for GPM optimization. It is demonstrated that the BCBS method requires a lower computation time than the direct solver, which is only 0.07% of the latter, and obtains similar optimization results (3.34% difference). This is considerably important for the rapid generation of optimized trajectories with the limited computing power of onboard computers. Furthermore, this method is expected to achieve online collaborative trajectory generation for multiple UAVs in view of its high computational efficiency.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3136874</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerodynamics ; Airborne/spaceborne computers ; Autonomous aerial vehicles ; Autopilot ; Bezier-shaped functions ; Boundary conditions ; Collision avoidance ; Collision dynamics ; Curves ; Dynamic models ; Flight simulation ; Flight time ; multi-UAV cooperation ; Spectral methods ; Trajectory ; Trajectory optimization ; Trajectory planning ; Unmanned aerial vehicles ; Vehicle dynamics</subject><ispartof>IEEE access, 2022, Vol.10, p.1626-1636</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2700151be665b8a2a16b06e51d427aeb9fdf19a7d06980b767c4c907277052d23</citedby><cites>FETCH-LOGICAL-c408t-2700151be665b8a2a16b06e51d427aeb9fdf19a7d06980b767c4c907277052d23</cites><orcidid>0000-0003-0401-5616 ; 0000-0003-4482-4768 ; 0000-0002-6523-4671 ; 0000-0002-7887-3181 ; 0000-0002-6570-3888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9656729$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yu, Ze</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><creatorcontrib>Huo, Mingying</creatorcontrib><creatorcontrib>Fan, Zichen</creatorcontrib><creatorcontrib>Yao, Weiran</creatorcontrib><title>Fast Cooperative Trajectory Generation of Unmanned Aerial Vehicles Using a Bezier Curve-Based Shaping Method</title><title>IEEE access</title><addtitle>Access</addtitle><description>This study uses a Bezier curve-based shaping (BCBS) approach based on the dynamic model to quickly generate 3D cooperative trajectories for unmanned aerial vehicles (UAVs). It can facilitate the solution of the flight trajectory problem that occurs after the reallocation of mission points. Trajectory coordinates are expanded based on the Bezier curves that naturally satisfy boundary conditions (BCs); trajectories with the minimum flight time and those satisfying the dynamic constraints and collision-free conditions can be obtained by adjusting the Bezier coefficients. A three-UAV flight simulation is carried out to verify the effectiveness of the proposed method. Further, the performance of the proposed method is compared with that of the Gauss pseudospectral method (GPM). The simulation results of the BCBS method are used as the initial values for GPM optimization. It is demonstrated that the BCBS method requires a lower computation time than the direct solver, which is only 0.07% of the latter, and obtains similar optimization results (3.34% difference). This is considerably important for the rapid generation of optimized trajectories with the limited computing power of onboard computers. Furthermore, this method is expected to achieve online collaborative trajectory generation for multiple UAVs in view of its high computational efficiency.</description><subject>Aerodynamics</subject><subject>Airborne/spaceborne computers</subject><subject>Autonomous aerial vehicles</subject><subject>Autopilot</subject><subject>Bezier-shaped functions</subject><subject>Boundary conditions</subject><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>Curves</subject><subject>Dynamic models</subject><subject>Flight simulation</subject><subject>Flight time</subject><subject>multi-UAV cooperation</subject><subject>Spectral methods</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicle dynamics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwzAMrRBITMAX7BKJc0eSNklzHBWDSUMctnGN3NRlnbZmJN0k-HraFSF8sfX83rOlF0VjRieMUf0wzfOn5XLCKWeThCUyU-lFNOJM6jgRibz8N19HdyFsaVdZBwk1inYzCC3JnTugh7Y-IVl52KJtnf8iz9icUdcQV5F1s4emwZJM0dewI--4qe0OA1mHuvkgQB7xu0ZP8qM_YfwIoaMuN3Dol6_Yblx5G11VsAt499tvovXsaZW_xIu353k-XcQ2pVkbc0UpE6xAKUWRAQcmCypRsDLlCrDQVVkxDaqkUme0UFLZ1GqquFJU8JInN9F88C0dbM3B13vwX8ZBbc6A8x8GfNs_b5RNUo1W6ArLVAiaycxmFaDQIClT2HndD14H7z6PGFqzdUffdO8bLplKtU4p61jJwLLeheCx-rvKqOlTMkNKpk_J_KbUqcaDqkbEP4WWQiqukx92Hozo</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yu, Ze</creator><creator>Qi, Naiming</creator><creator>Huo, Mingying</creator><creator>Fan, Zichen</creator><creator>Yao, Weiran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid><orcidid>https://orcid.org/0000-0003-4482-4768</orcidid><orcidid>https://orcid.org/0000-0002-6523-4671</orcidid><orcidid>https://orcid.org/0000-0002-7887-3181</orcidid><orcidid>https://orcid.org/0000-0002-6570-3888</orcidid></search><sort><creationdate>2022</creationdate><title>Fast Cooperative Trajectory Generation of Unmanned Aerial Vehicles Using a Bezier Curve-Based Shaping Method</title><author>Yu, Ze ; Qi, Naiming ; Huo, Mingying ; Fan, Zichen ; Yao, Weiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2700151be665b8a2a16b06e51d427aeb9fdf19a7d06980b767c4c907277052d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerodynamics</topic><topic>Airborne/spaceborne computers</topic><topic>Autonomous aerial vehicles</topic><topic>Autopilot</topic><topic>Bezier-shaped functions</topic><topic>Boundary conditions</topic><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>Curves</topic><topic>Dynamic models</topic><topic>Flight simulation</topic><topic>Flight time</topic><topic>multi-UAV cooperation</topic><topic>Spectral methods</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ze</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><creatorcontrib>Huo, Mingying</creatorcontrib><creatorcontrib>Fan, Zichen</creatorcontrib><creatorcontrib>Yao, Weiran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ze</au><au>Qi, Naiming</au><au>Huo, Mingying</au><au>Fan, Zichen</au><au>Yao, Weiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Cooperative Trajectory Generation of Unmanned Aerial Vehicles Using a Bezier Curve-Based Shaping Method</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1626</spage><epage>1636</epage><pages>1626-1636</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This study uses a Bezier curve-based shaping (BCBS) approach based on the dynamic model to quickly generate 3D cooperative trajectories for unmanned aerial vehicles (UAVs). It can facilitate the solution of the flight trajectory problem that occurs after the reallocation of mission points. Trajectory coordinates are expanded based on the Bezier curves that naturally satisfy boundary conditions (BCs); trajectories with the minimum flight time and those satisfying the dynamic constraints and collision-free conditions can be obtained by adjusting the Bezier coefficients. A three-UAV flight simulation is carried out to verify the effectiveness of the proposed method. Further, the performance of the proposed method is compared with that of the Gauss pseudospectral method (GPM). The simulation results of the BCBS method are used as the initial values for GPM optimization. It is demonstrated that the BCBS method requires a lower computation time than the direct solver, which is only 0.07% of the latter, and obtains similar optimization results (3.34% difference). This is considerably important for the rapid generation of optimized trajectories with the limited computing power of onboard computers. Furthermore, this method is expected to achieve online collaborative trajectory generation for multiple UAVs in view of its high computational efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3136874</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid><orcidid>https://orcid.org/0000-0003-4482-4768</orcidid><orcidid>https://orcid.org/0000-0002-6523-4671</orcidid><orcidid>https://orcid.org/0000-0002-7887-3181</orcidid><orcidid>https://orcid.org/0000-0002-6570-3888</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.1626-1636
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9656729
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aerodynamics
Airborne/spaceborne computers
Autonomous aerial vehicles
Autopilot
Bezier-shaped functions
Boundary conditions
Collision avoidance
Collision dynamics
Curves
Dynamic models
Flight simulation
Flight time
multi-UAV cooperation
Spectral methods
Trajectory
Trajectory optimization
Trajectory planning
Unmanned aerial vehicles
Vehicle dynamics
title Fast Cooperative Trajectory Generation of Unmanned Aerial Vehicles Using a Bezier Curve-Based Shaping Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Cooperative%20Trajectory%20Generation%20of%20Unmanned%20Aerial%20Vehicles%20Using%20a%20Bezier%20Curve-Based%20Shaping%20Method&rft.jtitle=IEEE%20access&rft.au=Yu,%20Ze&rft.date=2022&rft.volume=10&rft.spage=1626&rft.epage=1636&rft.pages=1626-1636&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3136874&rft_dat=%3Cproquest_ieee_%3E2617499401%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617499401&rft_id=info:pmid/&rft_ieee_id=9656729&rft_doaj_id=oai_doaj_org_article_7c349ec59fed4550868c8fae59a6017e&rfr_iscdi=true