Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection
Compared with ordinary optical images, the situation of remote sensing images is much more complicated. The problems caused by the shooting angles over the Earth's surface are: 1) some target categories with more complex shooting environments greatly increase the difficulty of detection and 2)...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Huang, Wei Li, Guanyi Jin, Baohua Chen, Qiqiang Yin, Junru Huang, Long |
description | Compared with ordinary optical images, the situation of remote sensing images is much more complicated. The problems caused by the shooting angles over the Earth's surface are: 1) some target categories with more complex shooting environments greatly increase the difficulty of detection and 2) the remote sensing images with large and small targets at the same time leading to large changes in the target scale are difficult to handle. In this letter, we designed a novel scenario context-aware-based bidirectional feature pyramid network (SCBi-FPN) to address the above problems. There are two key modules of the proposed network: the scene context-aware module uses pyramid pooling to aggregate contextual information of the different regions to obtain better global contextual information. The bidirectional feature pyramid network (Bi-FPN) module with squeeze and excitation (SE) blocks connects feature layers at different scales in a cross-scale manner and performs weighted feature map fusion before passing through the SE blocks to enable the network to obtain more accurate information. The experiments demonstrate that our designed network has good results compared with the state-of-the-art methods. In particular, we achieved mean average precision (mAP) of 92.92 on the publicly available NWPU VHR-10 dataset. |
doi_str_mv | 10.1109/LGRS.2021.3135935 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9656130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9656130</ieee_id><sourcerecordid>2619589527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b38e41911af5e72627851513bb25d9beba6d59e1e172fc53adf2f4352ad9d2af3</originalsourceid><addsrcrecordid>eNo9kMFOwkAQQBujiYh-gPGyiediZ7fTdo-AgiZEDWDirdm2s6QIXd1dgvy9NCWeZg7vTSYvCG4hGgBE8mE2nS8GPOIwECBQCjwLeoCYhRGmcN7uMYYos8_L4Mq5dRTxOMvSXqAXJTXK1oaNTePp14fDvbIUjpSjio3qqrZU-to0asMmpPzOEns_WLWtK_ZKfm_sF9PGsjltjSe2oMbVzYotlV2RZ4_kO_s6uNBq4-jmNPvBx-RpOX4OZ2_Tl_FwFpZcCh8WIqMYJIDSSClPeJohIIii4FjJggqVVCgJCFKuSxSq0lzHArmqZMWVFv3gvrv7bc3PjpzP12Znj8-7nCcgMZPI0yMFHVVa45wlnX_beqvsIYcob3Pmbc68zZmfch6du86pieiflwkmICLxB5jach4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619589527</pqid></control><display><type>article</type><title>Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Wei ; Li, Guanyi ; Jin, Baohua ; Chen, Qiqiang ; Yin, Junru ; Huang, Long</creator><creatorcontrib>Huang, Wei ; Li, Guanyi ; Jin, Baohua ; Chen, Qiqiang ; Yin, Junru ; Huang, Long</creatorcontrib><description>Compared with ordinary optical images, the situation of remote sensing images is much more complicated. The problems caused by the shooting angles over the Earth's surface are: 1) some target categories with more complex shooting environments greatly increase the difficulty of detection and 2) the remote sensing images with large and small targets at the same time leading to large changes in the target scale are difficult to handle. In this letter, we designed a novel scenario context-aware-based bidirectional feature pyramid network (SCBi-FPN) to address the above problems. There are two key modules of the proposed network: the scene context-aware module uses pyramid pooling to aggregate contextual information of the different regions to obtain better global contextual information. The bidirectional feature pyramid network (Bi-FPN) module with squeeze and excitation (SE) blocks connects feature layers at different scales in a cross-scale manner and performs weighted feature map fusion before passing through the SE blocks to enable the network to obtain more accurate information. The experiments demonstrate that our designed network has good results compared with the state-of-the-art methods. In particular, we achieved mean average precision (mAP) of 92.92 on the publicly available NWPU VHR-10 dataset.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3135935</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bidirectional feature pyramid network (Bi-FPN) ; Context ; Detection ; Earth surface ; Feature extraction ; Feature maps ; Marine vehicles ; Modules ; Object detection ; Optical fiber networks ; Optical imaging ; Remote sensing ; remote sensing images ; scenario context (SC) ; Sports ; Target detection</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b38e41911af5e72627851513bb25d9beba6d59e1e172fc53adf2f4352ad9d2af3</citedby><cites>FETCH-LOGICAL-c293t-b38e41911af5e72627851513bb25d9beba6d59e1e172fc53adf2f4352ad9d2af3</cites><orcidid>0000-0002-5499-3728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9656130$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9656130$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Guanyi</creatorcontrib><creatorcontrib>Jin, Baohua</creatorcontrib><creatorcontrib>Chen, Qiqiang</creatorcontrib><creatorcontrib>Yin, Junru</creatorcontrib><creatorcontrib>Huang, Long</creatorcontrib><title>Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Compared with ordinary optical images, the situation of remote sensing images is much more complicated. The problems caused by the shooting angles over the Earth's surface are: 1) some target categories with more complex shooting environments greatly increase the difficulty of detection and 2) the remote sensing images with large and small targets at the same time leading to large changes in the target scale are difficult to handle. In this letter, we designed a novel scenario context-aware-based bidirectional feature pyramid network (SCBi-FPN) to address the above problems. There are two key modules of the proposed network: the scene context-aware module uses pyramid pooling to aggregate contextual information of the different regions to obtain better global contextual information. The bidirectional feature pyramid network (Bi-FPN) module with squeeze and excitation (SE) blocks connects feature layers at different scales in a cross-scale manner and performs weighted feature map fusion before passing through the SE blocks to enable the network to obtain more accurate information. The experiments demonstrate that our designed network has good results compared with the state-of-the-art methods. In particular, we achieved mean average precision (mAP) of 92.92 on the publicly available NWPU VHR-10 dataset.</description><subject>Bidirectional feature pyramid network (Bi-FPN)</subject><subject>Context</subject><subject>Detection</subject><subject>Earth surface</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Marine vehicles</subject><subject>Modules</subject><subject>Object detection</subject><subject>Optical fiber networks</subject><subject>Optical imaging</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>scenario context (SC)</subject><subject>Sports</subject><subject>Target detection</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwkAQQBujiYh-gPGyiediZ7fTdo-AgiZEDWDirdm2s6QIXd1dgvy9NCWeZg7vTSYvCG4hGgBE8mE2nS8GPOIwECBQCjwLeoCYhRGmcN7uMYYos8_L4Mq5dRTxOMvSXqAXJTXK1oaNTePp14fDvbIUjpSjio3qqrZU-to0asMmpPzOEns_WLWtK_ZKfm_sF9PGsjltjSe2oMbVzYotlV2RZ4_kO_s6uNBq4-jmNPvBx-RpOX4OZ2_Tl_FwFpZcCh8WIqMYJIDSSClPeJohIIii4FjJggqVVCgJCFKuSxSq0lzHArmqZMWVFv3gvrv7bc3PjpzP12Znj8-7nCcgMZPI0yMFHVVa45wlnX_beqvsIYcob3Pmbc68zZmfch6du86pieiflwkmICLxB5jach4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Wei</creator><creator>Li, Guanyi</creator><creator>Jin, Baohua</creator><creator>Chen, Qiqiang</creator><creator>Yin, Junru</creator><creator>Huang, Long</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5499-3728</orcidid></search><sort><creationdate>2022</creationdate><title>Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection</title><author>Huang, Wei ; Li, Guanyi ; Jin, Baohua ; Chen, Qiqiang ; Yin, Junru ; Huang, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b38e41911af5e72627851513bb25d9beba6d59e1e172fc53adf2f4352ad9d2af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bidirectional feature pyramid network (Bi-FPN)</topic><topic>Context</topic><topic>Detection</topic><topic>Earth surface</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Marine vehicles</topic><topic>Modules</topic><topic>Object detection</topic><topic>Optical fiber networks</topic><topic>Optical imaging</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>scenario context (SC)</topic><topic>Sports</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Guanyi</creatorcontrib><creatorcontrib>Jin, Baohua</creatorcontrib><creatorcontrib>Chen, Qiqiang</creatorcontrib><creatorcontrib>Yin, Junru</creatorcontrib><creatorcontrib>Huang, Long</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Wei</au><au>Li, Guanyi</au><au>Jin, Baohua</au><au>Chen, Qiqiang</au><au>Yin, Junru</au><au>Huang, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Compared with ordinary optical images, the situation of remote sensing images is much more complicated. The problems caused by the shooting angles over the Earth's surface are: 1) some target categories with more complex shooting environments greatly increase the difficulty of detection and 2) the remote sensing images with large and small targets at the same time leading to large changes in the target scale are difficult to handle. In this letter, we designed a novel scenario context-aware-based bidirectional feature pyramid network (SCBi-FPN) to address the above problems. There are two key modules of the proposed network: the scene context-aware module uses pyramid pooling to aggregate contextual information of the different regions to obtain better global contextual information. The bidirectional feature pyramid network (Bi-FPN) module with squeeze and excitation (SE) blocks connects feature layers at different scales in a cross-scale manner and performs weighted feature map fusion before passing through the SE blocks to enable the network to obtain more accurate information. The experiments demonstrate that our designed network has good results compared with the state-of-the-art methods. In particular, we achieved mean average precision (mAP) of 92.92 on the publicly available NWPU VHR-10 dataset.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3135935</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5499-3728</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_9656130 |
source | IEEE Electronic Library (IEL) |
subjects | Bidirectional feature pyramid network (Bi-FPN) Context Detection Earth surface Feature extraction Feature maps Marine vehicles Modules Object detection Optical fiber networks Optical imaging Remote sensing remote sensing images scenario context (SC) Sports Target detection |
title | Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scenario%20Context-Aware-Based%20Bidirectional%20Feature%20Pyramid%20Network%20for%20Remote%20Sensing%20Target%20Detection&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Huang,%20Wei&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3135935&rft_dat=%3Cproquest_RIE%3E2619589527%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619589527&rft_id=info:pmid/&rft_ieee_id=9656130&rfr_iscdi=true |