Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection

Compared with ordinary optical images, the situation of remote sensing images is much more complicated. The problems caused by the shooting angles over the Earth's surface are: 1) some target categories with more complex shooting environments greatly increase the difficulty of detection and 2)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Huang, Wei, Li, Guanyi, Jin, Baohua, Chen, Qiqiang, Yin, Junru, Huang, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Huang, Wei
Li, Guanyi
Jin, Baohua
Chen, Qiqiang
Yin, Junru
Huang, Long
description Compared with ordinary optical images, the situation of remote sensing images is much more complicated. The problems caused by the shooting angles over the Earth's surface are: 1) some target categories with more complex shooting environments greatly increase the difficulty of detection and 2) the remote sensing images with large and small targets at the same time leading to large changes in the target scale are difficult to handle. In this letter, we designed a novel scenario context-aware-based bidirectional feature pyramid network (SCBi-FPN) to address the above problems. There are two key modules of the proposed network: the scene context-aware module uses pyramid pooling to aggregate contextual information of the different regions to obtain better global contextual information. The bidirectional feature pyramid network (Bi-FPN) module with squeeze and excitation (SE) blocks connects feature layers at different scales in a cross-scale manner and performs weighted feature map fusion before passing through the SE blocks to enable the network to obtain more accurate information. The experiments demonstrate that our designed network has good results compared with the state-of-the-art methods. In particular, we achieved mean average precision (mAP) of 92.92 on the publicly available NWPU VHR-10 dataset.
doi_str_mv 10.1109/LGRS.2021.3135935
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9656130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9656130</ieee_id><sourcerecordid>2619589527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b38e41911af5e72627851513bb25d9beba6d59e1e172fc53adf2f4352ad9d2af3</originalsourceid><addsrcrecordid>eNo9kMFOwkAQQBujiYh-gPGyiediZ7fTdo-AgiZEDWDirdm2s6QIXd1dgvy9NCWeZg7vTSYvCG4hGgBE8mE2nS8GPOIwECBQCjwLeoCYhRGmcN7uMYYos8_L4Mq5dRTxOMvSXqAXJTXK1oaNTePp14fDvbIUjpSjio3qqrZU-to0asMmpPzOEns_WLWtK_ZKfm_sF9PGsjltjSe2oMbVzYotlV2RZ4_kO_s6uNBq4-jmNPvBx-RpOX4OZ2_Tl_FwFpZcCh8WIqMYJIDSSClPeJohIIii4FjJggqVVCgJCFKuSxSq0lzHArmqZMWVFv3gvrv7bc3PjpzP12Znj8-7nCcgMZPI0yMFHVVa45wlnX_beqvsIYcob3Pmbc68zZmfch6du86pieiflwkmICLxB5jach4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619589527</pqid></control><display><type>article</type><title>Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Wei ; Li, Guanyi ; Jin, Baohua ; Chen, Qiqiang ; Yin, Junru ; Huang, Long</creator><creatorcontrib>Huang, Wei ; Li, Guanyi ; Jin, Baohua ; Chen, Qiqiang ; Yin, Junru ; Huang, Long</creatorcontrib><description>Compared with ordinary optical images, the situation of remote sensing images is much more complicated. The problems caused by the shooting angles over the Earth's surface are: 1) some target categories with more complex shooting environments greatly increase the difficulty of detection and 2) the remote sensing images with large and small targets at the same time leading to large changes in the target scale are difficult to handle. In this letter, we designed a novel scenario context-aware-based bidirectional feature pyramid network (SCBi-FPN) to address the above problems. There are two key modules of the proposed network: the scene context-aware module uses pyramid pooling to aggregate contextual information of the different regions to obtain better global contextual information. The bidirectional feature pyramid network (Bi-FPN) module with squeeze and excitation (SE) blocks connects feature layers at different scales in a cross-scale manner and performs weighted feature map fusion before passing through the SE blocks to enable the network to obtain more accurate information. The experiments demonstrate that our designed network has good results compared with the state-of-the-art methods. In particular, we achieved mean average precision (mAP) of 92.92 on the publicly available NWPU VHR-10 dataset.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3135935</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bidirectional feature pyramid network (Bi-FPN) ; Context ; Detection ; Earth surface ; Feature extraction ; Feature maps ; Marine vehicles ; Modules ; Object detection ; Optical fiber networks ; Optical imaging ; Remote sensing ; remote sensing images ; scenario context (SC) ; Sports ; Target detection</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b38e41911af5e72627851513bb25d9beba6d59e1e172fc53adf2f4352ad9d2af3</citedby><cites>FETCH-LOGICAL-c293t-b38e41911af5e72627851513bb25d9beba6d59e1e172fc53adf2f4352ad9d2af3</cites><orcidid>0000-0002-5499-3728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9656130$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9656130$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Guanyi</creatorcontrib><creatorcontrib>Jin, Baohua</creatorcontrib><creatorcontrib>Chen, Qiqiang</creatorcontrib><creatorcontrib>Yin, Junru</creatorcontrib><creatorcontrib>Huang, Long</creatorcontrib><title>Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Compared with ordinary optical images, the situation of remote sensing images is much more complicated. The problems caused by the shooting angles over the Earth's surface are: 1) some target categories with more complex shooting environments greatly increase the difficulty of detection and 2) the remote sensing images with large and small targets at the same time leading to large changes in the target scale are difficult to handle. In this letter, we designed a novel scenario context-aware-based bidirectional feature pyramid network (SCBi-FPN) to address the above problems. There are two key modules of the proposed network: the scene context-aware module uses pyramid pooling to aggregate contextual information of the different regions to obtain better global contextual information. The bidirectional feature pyramid network (Bi-FPN) module with squeeze and excitation (SE) blocks connects feature layers at different scales in a cross-scale manner and performs weighted feature map fusion before passing through the SE blocks to enable the network to obtain more accurate information. The experiments demonstrate that our designed network has good results compared with the state-of-the-art methods. In particular, we achieved mean average precision (mAP) of 92.92 on the publicly available NWPU VHR-10 dataset.</description><subject>Bidirectional feature pyramid network (Bi-FPN)</subject><subject>Context</subject><subject>Detection</subject><subject>Earth surface</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Marine vehicles</subject><subject>Modules</subject><subject>Object detection</subject><subject>Optical fiber networks</subject><subject>Optical imaging</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>scenario context (SC)</subject><subject>Sports</subject><subject>Target detection</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwkAQQBujiYh-gPGyiediZ7fTdo-AgiZEDWDirdm2s6QIXd1dgvy9NCWeZg7vTSYvCG4hGgBE8mE2nS8GPOIwECBQCjwLeoCYhRGmcN7uMYYos8_L4Mq5dRTxOMvSXqAXJTXK1oaNTePp14fDvbIUjpSjio3qqrZU-to0asMmpPzOEns_WLWtK_ZKfm_sF9PGsjltjSe2oMbVzYotlV2RZ4_kO_s6uNBq4-jmNPvBx-RpOX4OZ2_Tl_FwFpZcCh8WIqMYJIDSSClPeJohIIii4FjJggqVVCgJCFKuSxSq0lzHArmqZMWVFv3gvrv7bc3PjpzP12Znj8-7nCcgMZPI0yMFHVVa45wlnX_beqvsIYcob3Pmbc68zZmfch6du86pieiflwkmICLxB5jach4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Wei</creator><creator>Li, Guanyi</creator><creator>Jin, Baohua</creator><creator>Chen, Qiqiang</creator><creator>Yin, Junru</creator><creator>Huang, Long</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5499-3728</orcidid></search><sort><creationdate>2022</creationdate><title>Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection</title><author>Huang, Wei ; Li, Guanyi ; Jin, Baohua ; Chen, Qiqiang ; Yin, Junru ; Huang, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b38e41911af5e72627851513bb25d9beba6d59e1e172fc53adf2f4352ad9d2af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bidirectional feature pyramid network (Bi-FPN)</topic><topic>Context</topic><topic>Detection</topic><topic>Earth surface</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Marine vehicles</topic><topic>Modules</topic><topic>Object detection</topic><topic>Optical fiber networks</topic><topic>Optical imaging</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>scenario context (SC)</topic><topic>Sports</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Guanyi</creatorcontrib><creatorcontrib>Jin, Baohua</creatorcontrib><creatorcontrib>Chen, Qiqiang</creatorcontrib><creatorcontrib>Yin, Junru</creatorcontrib><creatorcontrib>Huang, Long</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Wei</au><au>Li, Guanyi</au><au>Jin, Baohua</au><au>Chen, Qiqiang</au><au>Yin, Junru</au><au>Huang, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Compared with ordinary optical images, the situation of remote sensing images is much more complicated. The problems caused by the shooting angles over the Earth's surface are: 1) some target categories with more complex shooting environments greatly increase the difficulty of detection and 2) the remote sensing images with large and small targets at the same time leading to large changes in the target scale are difficult to handle. In this letter, we designed a novel scenario context-aware-based bidirectional feature pyramid network (SCBi-FPN) to address the above problems. There are two key modules of the proposed network: the scene context-aware module uses pyramid pooling to aggregate contextual information of the different regions to obtain better global contextual information. The bidirectional feature pyramid network (Bi-FPN) module with squeeze and excitation (SE) blocks connects feature layers at different scales in a cross-scale manner and performs weighted feature map fusion before passing through the SE blocks to enable the network to obtain more accurate information. The experiments demonstrate that our designed network has good results compared with the state-of-the-art methods. In particular, we achieved mean average precision (mAP) of 92.92 on the publicly available NWPU VHR-10 dataset.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3135935</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5499-3728</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9656130
source IEEE Electronic Library (IEL)
subjects Bidirectional feature pyramid network (Bi-FPN)
Context
Detection
Earth surface
Feature extraction
Feature maps
Marine vehicles
Modules
Object detection
Optical fiber networks
Optical imaging
Remote sensing
remote sensing images
scenario context (SC)
Sports
Target detection
title Scenario Context-Aware-Based Bidirectional Feature Pyramid Network for Remote Sensing Target Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scenario%20Context-Aware-Based%20Bidirectional%20Feature%20Pyramid%20Network%20for%20Remote%20Sensing%20Target%20Detection&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Huang,%20Wei&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3135935&rft_dat=%3Cproquest_RIE%3E2619589527%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619589527&rft_id=info:pmid/&rft_ieee_id=9656130&rfr_iscdi=true