High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination
This work reports recent progress in the sub-6 GHz power performance of GaN-based HEMTs grown on high resistivity silicon substrates with passivation implanted termination (PIT) process. Thanks to the mitigated electric field crowding at the gate edge and the suppressed negative fixed charge-induced...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2022-02, Vol.43 (2), p.188-191 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 2 |
container_start_page | 188 |
container_title | IEEE electron device letters |
container_volume | 43 |
creator | Lu, Hao Hou, Bin Yang, Ling Zhang, Meng Deng, Longge Wu, Mei Si, Zeyan Huang, Sen Ma, Xiaohua Hao, Yue |
description | This work reports recent progress in the sub-6 GHz power performance of GaN-based HEMTs grown on high resistivity silicon substrates with passivation implanted termination (PIT) process. Thanks to the mitigated electric field crowding at the gate edge and the suppressed negative fixed charge-induced carrier depletion, the fabricated HEMTs demonstrate a low leakage current, a high ON/OFF current ratio of 10 8 , and improved breakdown voltage associated with a current collapse at 40 V drain quiescent condition of as low as 5.6%. S-band continuous-wave large signal measurements yield a high power-added efficiency (PAE) of 69%, a drain efficiency (DE) of 72%, and an output power density ( {P}_{\text{out}} ) of 7.2 W/mm at {V}_{\text{DS}}=30 V. Moreover, the transistor delivers a maximum {P}_{\text{out}} up to 10.2 W/mm with a peak PAE of 63.8% at {V}_{\text{DS}}=40 V. The PAE and {P}_{\text{out}} as a function of drain bias indicate that the transistors remain constant high PAE and linearly increased {P}_{\text{out}} over a wide range of drain voltage variation. These excellent results have demonstrated the PIT process could be an attractive technique to facilitate the application of high-performance and cost-competitive GaN-on-Si HEMTs for 5G wireless base stations. |
doi_str_mv | 10.1109/LED.2021.3135703 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9650843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9650843</ieee_id><sourcerecordid>2623470985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c1244ceeefec73f58cad33ea76c59298acd3f1b653f89230e1e4d97fd49d4da63</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Ykk-xujlL7JVWLVjyGmA-b0t2tyVbw37va4mlgeN53hgehS0oGlBJ5Mx_dDRhhdAAUREHgCPWoEGVGRA7HqEcKTjOgJD9FZymtCaGcF7yH7qfhY4Wfx3jhom9ipWvj8EQ_Zk2dvQQ8HT0sE34L7QovdErhS7ehqfGs2m503TqLly5Wof7bnqMTrzfJXRxmH72OR8vhNJs_TWbD23lmmKRtZijj3DjnvDMFeFEabQGcLnIjJJOlNhY8fc8F-FIyII46bmXhLZeWW51DH13ve7ex-dy51Kp1s4t1d1KxnAEviCxFR5E9ZWKTUnRebWOodPxWlKhfY6ozpn6NqYOxLnK1j4Tuu39c5oKUHOAHbDBmJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623470985</pqid></control><display><type>article</type><title>High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Lu, Hao ; Hou, Bin ; Yang, Ling ; Zhang, Meng ; Deng, Longge ; Wu, Mei ; Si, Zeyan ; Huang, Sen ; Ma, Xiaohua ; Hao, Yue</creator><creatorcontrib>Lu, Hao ; Hou, Bin ; Yang, Ling ; Zhang, Meng ; Deng, Longge ; Wu, Mei ; Si, Zeyan ; Huang, Sen ; Ma, Xiaohua ; Hao, Yue</creatorcontrib><description><![CDATA[This work reports recent progress in the sub-6 GHz power performance of GaN-based HEMTs grown on high resistivity silicon substrates with passivation implanted termination (PIT) process. Thanks to the mitigated electric field crowding at the gate edge and the suppressed negative fixed charge-induced carrier depletion, the fabricated HEMTs demonstrate a low leakage current, a high ON/OFF current ratio of 10 8 , and improved breakdown voltage associated with a current collapse at 40 V drain quiescent condition of as low as 5.6%. S-band continuous-wave large signal measurements yield a high power-added efficiency (PAE) of 69%, a drain efficiency (DE) of 72%, and an output power density (<inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula>) of 7.2 W/mm at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=30 </tex-math></inline-formula> V. Moreover, the transistor delivers a maximum <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> up to 10.2 W/mm with a peak PAE of 63.8% at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=40 </tex-math></inline-formula> V. The PAE and <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> as a function of drain bias indicate that the transistors remain constant high PAE and linearly increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> over a wide range of drain voltage variation. These excellent results have demonstrated the PIT process could be an attractive technique to facilitate the application of high-performance and cost-competitive GaN-on-Si HEMTs for 5G wireless base stations.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2021.3135703</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum gallium nitride ; Continuous radiation ; Current carriers ; Depletion ; Electric fields ; Electric potential ; Fluorine ; Gallium nitrides ; GaN-on-silicon ; gate edge termination ; HEMTs ; High electron mobility transistors ; high electron mobility transistors (HEMTs) ; large-signal ; Leakage current ; Logic gates ; MODFETs ; passivation ; Passivity ; power-added-efficiency (PAE) ; Semiconductor devices ; Silicon substrates ; Stress ; Voltage ; Wide band gap semiconductors</subject><ispartof>IEEE electron device letters, 2022-02, Vol.43 (2), p.188-191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c1244ceeefec73f58cad33ea76c59298acd3f1b653f89230e1e4d97fd49d4da63</citedby><cites>FETCH-LOGICAL-c291t-c1244ceeefec73f58cad33ea76c59298acd3f1b653f89230e1e4d97fd49d4da63</cites><orcidid>0000-0002-6518-7748 ; 0000-0002-1331-6253 ; 0000-0002-4932-4773 ; 0000-0001-7284-8180 ; 0000-0002-5980-3161 ; 0000-0001-8827-1398 ; 0000-0002-3189-7864 ; 0000-0002-5368-3699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9650843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9650843$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Hou, Bin</creatorcontrib><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Deng, Longge</creatorcontrib><creatorcontrib>Wu, Mei</creatorcontrib><creatorcontrib>Si, Zeyan</creatorcontrib><creatorcontrib>Huang, Sen</creatorcontrib><creatorcontrib>Ma, Xiaohua</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><title>High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[This work reports recent progress in the sub-6 GHz power performance of GaN-based HEMTs grown on high resistivity silicon substrates with passivation implanted termination (PIT) process. Thanks to the mitigated electric field crowding at the gate edge and the suppressed negative fixed charge-induced carrier depletion, the fabricated HEMTs demonstrate a low leakage current, a high ON/OFF current ratio of 10 8 , and improved breakdown voltage associated with a current collapse at 40 V drain quiescent condition of as low as 5.6%. S-band continuous-wave large signal measurements yield a high power-added efficiency (PAE) of 69%, a drain efficiency (DE) of 72%, and an output power density (<inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula>) of 7.2 W/mm at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=30 </tex-math></inline-formula> V. Moreover, the transistor delivers a maximum <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> up to 10.2 W/mm with a peak PAE of 63.8% at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=40 </tex-math></inline-formula> V. The PAE and <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> as a function of drain bias indicate that the transistors remain constant high PAE and linearly increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> over a wide range of drain voltage variation. These excellent results have demonstrated the PIT process could be an attractive technique to facilitate the application of high-performance and cost-competitive GaN-on-Si HEMTs for 5G wireless base stations.]]></description><subject>Aluminum gallium nitride</subject><subject>Continuous radiation</subject><subject>Current carriers</subject><subject>Depletion</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Fluorine</subject><subject>Gallium nitrides</subject><subject>GaN-on-silicon</subject><subject>gate edge termination</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>high electron mobility transistors (HEMTs)</subject><subject>large-signal</subject><subject>Leakage current</subject><subject>Logic gates</subject><subject>MODFETs</subject><subject>passivation</subject><subject>Passivity</subject><subject>power-added-efficiency (PAE)</subject><subject>Semiconductor devices</subject><subject>Silicon substrates</subject><subject>Stress</subject><subject>Voltage</subject><subject>Wide band gap semiconductors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Ykk-xujlL7JVWLVjyGmA-b0t2tyVbw37va4mlgeN53hgehS0oGlBJ5Mx_dDRhhdAAUREHgCPWoEGVGRA7HqEcKTjOgJD9FZymtCaGcF7yH7qfhY4Wfx3jhom9ipWvj8EQ_Zk2dvQQ8HT0sE34L7QovdErhS7ehqfGs2m503TqLly5Wof7bnqMTrzfJXRxmH72OR8vhNJs_TWbD23lmmKRtZijj3DjnvDMFeFEabQGcLnIjJJOlNhY8fc8F-FIyII46bmXhLZeWW51DH13ve7ex-dy51Kp1s4t1d1KxnAEviCxFR5E9ZWKTUnRebWOodPxWlKhfY6ozpn6NqYOxLnK1j4Tuu39c5oKUHOAHbDBmJw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Lu, Hao</creator><creator>Hou, Bin</creator><creator>Yang, Ling</creator><creator>Zhang, Meng</creator><creator>Deng, Longge</creator><creator>Wu, Mei</creator><creator>Si, Zeyan</creator><creator>Huang, Sen</creator><creator>Ma, Xiaohua</creator><creator>Hao, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6518-7748</orcidid><orcidid>https://orcid.org/0000-0002-1331-6253</orcidid><orcidid>https://orcid.org/0000-0002-4932-4773</orcidid><orcidid>https://orcid.org/0000-0001-7284-8180</orcidid><orcidid>https://orcid.org/0000-0002-5980-3161</orcidid><orcidid>https://orcid.org/0000-0001-8827-1398</orcidid><orcidid>https://orcid.org/0000-0002-3189-7864</orcidid><orcidid>https://orcid.org/0000-0002-5368-3699</orcidid></search><sort><creationdate>20220201</creationdate><title>High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination</title><author>Lu, Hao ; Hou, Bin ; Yang, Ling ; Zhang, Meng ; Deng, Longge ; Wu, Mei ; Si, Zeyan ; Huang, Sen ; Ma, Xiaohua ; Hao, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c1244ceeefec73f58cad33ea76c59298acd3f1b653f89230e1e4d97fd49d4da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum gallium nitride</topic><topic>Continuous radiation</topic><topic>Current carriers</topic><topic>Depletion</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Fluorine</topic><topic>Gallium nitrides</topic><topic>GaN-on-silicon</topic><topic>gate edge termination</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>high electron mobility transistors (HEMTs)</topic><topic>large-signal</topic><topic>Leakage current</topic><topic>Logic gates</topic><topic>MODFETs</topic><topic>passivation</topic><topic>Passivity</topic><topic>power-added-efficiency (PAE)</topic><topic>Semiconductor devices</topic><topic>Silicon substrates</topic><topic>Stress</topic><topic>Voltage</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Hou, Bin</creatorcontrib><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Deng, Longge</creatorcontrib><creatorcontrib>Wu, Mei</creatorcontrib><creatorcontrib>Si, Zeyan</creatorcontrib><creatorcontrib>Huang, Sen</creatorcontrib><creatorcontrib>Ma, Xiaohua</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Hao</au><au>Hou, Bin</au><au>Yang, Ling</au><au>Zhang, Meng</au><au>Deng, Longge</au><au>Wu, Mei</au><au>Si, Zeyan</au><au>Huang, Sen</au><au>Ma, Xiaohua</au><au>Hao, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>43</volume><issue>2</issue><spage>188</spage><epage>191</epage><pages>188-191</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[This work reports recent progress in the sub-6 GHz power performance of GaN-based HEMTs grown on high resistivity silicon substrates with passivation implanted termination (PIT) process. Thanks to the mitigated electric field crowding at the gate edge and the suppressed negative fixed charge-induced carrier depletion, the fabricated HEMTs demonstrate a low leakage current, a high ON/OFF current ratio of 10 8 , and improved breakdown voltage associated with a current collapse at 40 V drain quiescent condition of as low as 5.6%. S-band continuous-wave large signal measurements yield a high power-added efficiency (PAE) of 69%, a drain efficiency (DE) of 72%, and an output power density (<inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula>) of 7.2 W/mm at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=30 </tex-math></inline-formula> V. Moreover, the transistor delivers a maximum <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> up to 10.2 W/mm with a peak PAE of 63.8% at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=40 </tex-math></inline-formula> V. The PAE and <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> as a function of drain bias indicate that the transistors remain constant high PAE and linearly increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> over a wide range of drain voltage variation. These excellent results have demonstrated the PIT process could be an attractive technique to facilitate the application of high-performance and cost-competitive GaN-on-Si HEMTs for 5G wireless base stations.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2021.3135703</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6518-7748</orcidid><orcidid>https://orcid.org/0000-0002-1331-6253</orcidid><orcidid>https://orcid.org/0000-0002-4932-4773</orcidid><orcidid>https://orcid.org/0000-0001-7284-8180</orcidid><orcidid>https://orcid.org/0000-0002-5980-3161</orcidid><orcidid>https://orcid.org/0000-0001-8827-1398</orcidid><orcidid>https://orcid.org/0000-0002-3189-7864</orcidid><orcidid>https://orcid.org/0000-0002-5368-3699</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2022-02, Vol.43 (2), p.188-191 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_9650843 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Aluminum gallium nitride Continuous radiation Current carriers Depletion Electric fields Electric potential Fluorine Gallium nitrides GaN-on-silicon gate edge termination HEMTs High electron mobility transistors high electron mobility transistors (HEMTs) large-signal Leakage current Logic gates MODFETs passivation Passivity power-added-efficiency (PAE) Semiconductor devices Silicon substrates Stress Voltage Wide band gap semiconductors |
title | High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20RF%20Performance%20GaN-on-Si%20HEMTs%20With%20Passivation%20Implanted%20Termination&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Lu,%20Hao&rft.date=2022-02-01&rft.volume=43&rft.issue=2&rft.spage=188&rft.epage=191&rft.pages=188-191&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2021.3135703&rft_dat=%3Cproquest_RIE%3E2623470985%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623470985&rft_id=info:pmid/&rft_ieee_id=9650843&rfr_iscdi=true |