High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination

This work reports recent progress in the sub-6 GHz power performance of GaN-based HEMTs grown on high resistivity silicon substrates with passivation implanted termination (PIT) process. Thanks to the mitigated electric field crowding at the gate edge and the suppressed negative fixed charge-induced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2022-02, Vol.43 (2), p.188-191
Hauptverfasser: Lu, Hao, Hou, Bin, Yang, Ling, Zhang, Meng, Deng, Longge, Wu, Mei, Si, Zeyan, Huang, Sen, Ma, Xiaohua, Hao, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 2
container_start_page 188
container_title IEEE electron device letters
container_volume 43
creator Lu, Hao
Hou, Bin
Yang, Ling
Zhang, Meng
Deng, Longge
Wu, Mei
Si, Zeyan
Huang, Sen
Ma, Xiaohua
Hao, Yue
description This work reports recent progress in the sub-6 GHz power performance of GaN-based HEMTs grown on high resistivity silicon substrates with passivation implanted termination (PIT) process. Thanks to the mitigated electric field crowding at the gate edge and the suppressed negative fixed charge-induced carrier depletion, the fabricated HEMTs demonstrate a low leakage current, a high ON/OFF current ratio of 10 8 , and improved breakdown voltage associated with a current collapse at 40 V drain quiescent condition of as low as 5.6%. S-band continuous-wave large signal measurements yield a high power-added efficiency (PAE) of 69%, a drain efficiency (DE) of 72%, and an output power density ( {P}_{\text{out}} ) of 7.2 W/mm at {V}_{\text{DS}}=30 V. Moreover, the transistor delivers a maximum {P}_{\text{out}} up to 10.2 W/mm with a peak PAE of 63.8% at {V}_{\text{DS}}=40 V. The PAE and {P}_{\text{out}} as a function of drain bias indicate that the transistors remain constant high PAE and linearly increased {P}_{\text{out}} over a wide range of drain voltage variation. These excellent results have demonstrated the PIT process could be an attractive technique to facilitate the application of high-performance and cost-competitive GaN-on-Si HEMTs for 5G wireless base stations.
doi_str_mv 10.1109/LED.2021.3135703
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9650843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9650843</ieee_id><sourcerecordid>2623470985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c1244ceeefec73f58cad33ea76c59298acd3f1b653f89230e1e4d97fd49d4da63</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Ykk-xujlL7JVWLVjyGmA-b0t2tyVbw37va4mlgeN53hgehS0oGlBJ5Mx_dDRhhdAAUREHgCPWoEGVGRA7HqEcKTjOgJD9FZymtCaGcF7yH7qfhY4Wfx3jhom9ipWvj8EQ_Zk2dvQQ8HT0sE34L7QovdErhS7ehqfGs2m503TqLly5Wof7bnqMTrzfJXRxmH72OR8vhNJs_TWbD23lmmKRtZijj3DjnvDMFeFEabQGcLnIjJJOlNhY8fc8F-FIyII46bmXhLZeWW51DH13ve7ex-dy51Kp1s4t1d1KxnAEviCxFR5E9ZWKTUnRebWOodPxWlKhfY6ozpn6NqYOxLnK1j4Tuu39c5oKUHOAHbDBmJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623470985</pqid></control><display><type>article</type><title>High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Lu, Hao ; Hou, Bin ; Yang, Ling ; Zhang, Meng ; Deng, Longge ; Wu, Mei ; Si, Zeyan ; Huang, Sen ; Ma, Xiaohua ; Hao, Yue</creator><creatorcontrib>Lu, Hao ; Hou, Bin ; Yang, Ling ; Zhang, Meng ; Deng, Longge ; Wu, Mei ; Si, Zeyan ; Huang, Sen ; Ma, Xiaohua ; Hao, Yue</creatorcontrib><description><![CDATA[This work reports recent progress in the sub-6 GHz power performance of GaN-based HEMTs grown on high resistivity silicon substrates with passivation implanted termination (PIT) process. Thanks to the mitigated electric field crowding at the gate edge and the suppressed negative fixed charge-induced carrier depletion, the fabricated HEMTs demonstrate a low leakage current, a high ON/OFF current ratio of 10 8 , and improved breakdown voltage associated with a current collapse at 40 V drain quiescent condition of as low as 5.6%. S-band continuous-wave large signal measurements yield a high power-added efficiency (PAE) of 69%, a drain efficiency (DE) of 72%, and an output power density (<inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula>) of 7.2 W/mm at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=30 </tex-math></inline-formula> V. Moreover, the transistor delivers a maximum <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> up to 10.2 W/mm with a peak PAE of 63.8% at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=40 </tex-math></inline-formula> V. The PAE and <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> as a function of drain bias indicate that the transistors remain constant high PAE and linearly increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> over a wide range of drain voltage variation. These excellent results have demonstrated the PIT process could be an attractive technique to facilitate the application of high-performance and cost-competitive GaN-on-Si HEMTs for 5G wireless base stations.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2021.3135703</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum gallium nitride ; Continuous radiation ; Current carriers ; Depletion ; Electric fields ; Electric potential ; Fluorine ; Gallium nitrides ; GaN-on-silicon ; gate edge termination ; HEMTs ; High electron mobility transistors ; high electron mobility transistors (HEMTs) ; large-signal ; Leakage current ; Logic gates ; MODFETs ; passivation ; Passivity ; power-added-efficiency (PAE) ; Semiconductor devices ; Silicon substrates ; Stress ; Voltage ; Wide band gap semiconductors</subject><ispartof>IEEE electron device letters, 2022-02, Vol.43 (2), p.188-191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c1244ceeefec73f58cad33ea76c59298acd3f1b653f89230e1e4d97fd49d4da63</citedby><cites>FETCH-LOGICAL-c291t-c1244ceeefec73f58cad33ea76c59298acd3f1b653f89230e1e4d97fd49d4da63</cites><orcidid>0000-0002-6518-7748 ; 0000-0002-1331-6253 ; 0000-0002-4932-4773 ; 0000-0001-7284-8180 ; 0000-0002-5980-3161 ; 0000-0001-8827-1398 ; 0000-0002-3189-7864 ; 0000-0002-5368-3699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9650843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9650843$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Hou, Bin</creatorcontrib><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Deng, Longge</creatorcontrib><creatorcontrib>Wu, Mei</creatorcontrib><creatorcontrib>Si, Zeyan</creatorcontrib><creatorcontrib>Huang, Sen</creatorcontrib><creatorcontrib>Ma, Xiaohua</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><title>High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[This work reports recent progress in the sub-6 GHz power performance of GaN-based HEMTs grown on high resistivity silicon substrates with passivation implanted termination (PIT) process. Thanks to the mitigated electric field crowding at the gate edge and the suppressed negative fixed charge-induced carrier depletion, the fabricated HEMTs demonstrate a low leakage current, a high ON/OFF current ratio of 10 8 , and improved breakdown voltage associated with a current collapse at 40 V drain quiescent condition of as low as 5.6%. S-band continuous-wave large signal measurements yield a high power-added efficiency (PAE) of 69%, a drain efficiency (DE) of 72%, and an output power density (<inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula>) of 7.2 W/mm at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=30 </tex-math></inline-formula> V. Moreover, the transistor delivers a maximum <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> up to 10.2 W/mm with a peak PAE of 63.8% at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=40 </tex-math></inline-formula> V. The PAE and <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> as a function of drain bias indicate that the transistors remain constant high PAE and linearly increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> over a wide range of drain voltage variation. These excellent results have demonstrated the PIT process could be an attractive technique to facilitate the application of high-performance and cost-competitive GaN-on-Si HEMTs for 5G wireless base stations.]]></description><subject>Aluminum gallium nitride</subject><subject>Continuous radiation</subject><subject>Current carriers</subject><subject>Depletion</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Fluorine</subject><subject>Gallium nitrides</subject><subject>GaN-on-silicon</subject><subject>gate edge termination</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>high electron mobility transistors (HEMTs)</subject><subject>large-signal</subject><subject>Leakage current</subject><subject>Logic gates</subject><subject>MODFETs</subject><subject>passivation</subject><subject>Passivity</subject><subject>power-added-efficiency (PAE)</subject><subject>Semiconductor devices</subject><subject>Silicon substrates</subject><subject>Stress</subject><subject>Voltage</subject><subject>Wide band gap semiconductors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Ykk-xujlL7JVWLVjyGmA-b0t2tyVbw37va4mlgeN53hgehS0oGlBJ5Mx_dDRhhdAAUREHgCPWoEGVGRA7HqEcKTjOgJD9FZymtCaGcF7yH7qfhY4Wfx3jhom9ipWvj8EQ_Zk2dvQQ8HT0sE34L7QovdErhS7ehqfGs2m503TqLly5Wof7bnqMTrzfJXRxmH72OR8vhNJs_TWbD23lmmKRtZijj3DjnvDMFeFEabQGcLnIjJJOlNhY8fc8F-FIyII46bmXhLZeWW51DH13ve7ex-dy51Kp1s4t1d1KxnAEviCxFR5E9ZWKTUnRebWOodPxWlKhfY6ozpn6NqYOxLnK1j4Tuu39c5oKUHOAHbDBmJw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Lu, Hao</creator><creator>Hou, Bin</creator><creator>Yang, Ling</creator><creator>Zhang, Meng</creator><creator>Deng, Longge</creator><creator>Wu, Mei</creator><creator>Si, Zeyan</creator><creator>Huang, Sen</creator><creator>Ma, Xiaohua</creator><creator>Hao, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6518-7748</orcidid><orcidid>https://orcid.org/0000-0002-1331-6253</orcidid><orcidid>https://orcid.org/0000-0002-4932-4773</orcidid><orcidid>https://orcid.org/0000-0001-7284-8180</orcidid><orcidid>https://orcid.org/0000-0002-5980-3161</orcidid><orcidid>https://orcid.org/0000-0001-8827-1398</orcidid><orcidid>https://orcid.org/0000-0002-3189-7864</orcidid><orcidid>https://orcid.org/0000-0002-5368-3699</orcidid></search><sort><creationdate>20220201</creationdate><title>High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination</title><author>Lu, Hao ; Hou, Bin ; Yang, Ling ; Zhang, Meng ; Deng, Longge ; Wu, Mei ; Si, Zeyan ; Huang, Sen ; Ma, Xiaohua ; Hao, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c1244ceeefec73f58cad33ea76c59298acd3f1b653f89230e1e4d97fd49d4da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum gallium nitride</topic><topic>Continuous radiation</topic><topic>Current carriers</topic><topic>Depletion</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Fluorine</topic><topic>Gallium nitrides</topic><topic>GaN-on-silicon</topic><topic>gate edge termination</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>high electron mobility transistors (HEMTs)</topic><topic>large-signal</topic><topic>Leakage current</topic><topic>Logic gates</topic><topic>MODFETs</topic><topic>passivation</topic><topic>Passivity</topic><topic>power-added-efficiency (PAE)</topic><topic>Semiconductor devices</topic><topic>Silicon substrates</topic><topic>Stress</topic><topic>Voltage</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Hou, Bin</creatorcontrib><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Deng, Longge</creatorcontrib><creatorcontrib>Wu, Mei</creatorcontrib><creatorcontrib>Si, Zeyan</creatorcontrib><creatorcontrib>Huang, Sen</creatorcontrib><creatorcontrib>Ma, Xiaohua</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Hao</au><au>Hou, Bin</au><au>Yang, Ling</au><au>Zhang, Meng</au><au>Deng, Longge</au><au>Wu, Mei</au><au>Si, Zeyan</au><au>Huang, Sen</au><au>Ma, Xiaohua</au><au>Hao, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>43</volume><issue>2</issue><spage>188</spage><epage>191</epage><pages>188-191</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[This work reports recent progress in the sub-6 GHz power performance of GaN-based HEMTs grown on high resistivity silicon substrates with passivation implanted termination (PIT) process. Thanks to the mitigated electric field crowding at the gate edge and the suppressed negative fixed charge-induced carrier depletion, the fabricated HEMTs demonstrate a low leakage current, a high ON/OFF current ratio of 10 8 , and improved breakdown voltage associated with a current collapse at 40 V drain quiescent condition of as low as 5.6%. S-band continuous-wave large signal measurements yield a high power-added efficiency (PAE) of 69%, a drain efficiency (DE) of 72%, and an output power density (<inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula>) of 7.2 W/mm at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=30 </tex-math></inline-formula> V. Moreover, the transistor delivers a maximum <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> up to 10.2 W/mm with a peak PAE of 63.8% at <inline-formula> <tex-math notation="LaTeX">{V}_{\text{DS}}=40 </tex-math></inline-formula> V. The PAE and <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> as a function of drain bias indicate that the transistors remain constant high PAE and linearly increased <inline-formula> <tex-math notation="LaTeX">{P}_{\text{out}} </tex-math></inline-formula> over a wide range of drain voltage variation. These excellent results have demonstrated the PIT process could be an attractive technique to facilitate the application of high-performance and cost-competitive GaN-on-Si HEMTs for 5G wireless base stations.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2021.3135703</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6518-7748</orcidid><orcidid>https://orcid.org/0000-0002-1331-6253</orcidid><orcidid>https://orcid.org/0000-0002-4932-4773</orcidid><orcidid>https://orcid.org/0000-0001-7284-8180</orcidid><orcidid>https://orcid.org/0000-0002-5980-3161</orcidid><orcidid>https://orcid.org/0000-0001-8827-1398</orcidid><orcidid>https://orcid.org/0000-0002-3189-7864</orcidid><orcidid>https://orcid.org/0000-0002-5368-3699</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2022-02, Vol.43 (2), p.188-191
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_9650843
source IEEE/IET Electronic Library (IEL)
subjects Aluminum gallium nitride
Continuous radiation
Current carriers
Depletion
Electric fields
Electric potential
Fluorine
Gallium nitrides
GaN-on-silicon
gate edge termination
HEMTs
High electron mobility transistors
high electron mobility transistors (HEMTs)
large-signal
Leakage current
Logic gates
MODFETs
passivation
Passivity
power-added-efficiency (PAE)
Semiconductor devices
Silicon substrates
Stress
Voltage
Wide band gap semiconductors
title High RF Performance GaN-on-Si HEMTs With Passivation Implanted Termination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20RF%20Performance%20GaN-on-Si%20HEMTs%20With%20Passivation%20Implanted%20Termination&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Lu,%20Hao&rft.date=2022-02-01&rft.volume=43&rft.issue=2&rft.spage=188&rft.epage=191&rft.pages=188-191&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2021.3135703&rft_dat=%3Cproquest_RIE%3E2623470985%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623470985&rft_id=info:pmid/&rft_ieee_id=9650843&rfr_iscdi=true