Asynchrony Increases Efficiency: Time Encoding of Videos and Low-Rank Signals
In event-based sensing, many sensors independently and asynchronously emit events when there is a change in their input. Event-based sensing can present significant improvements in power efficiency when compared to traditional sampling, because (1) the output is a stream of events where the importan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2022, Vol.70, p.105-116 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | |
container_start_page | 105 |
container_title | IEEE transactions on signal processing |
container_volume | 70 |
creator | Adam, Karen Scholefield, Adam Vetterli, Martin |
description | In event-based sensing, many sensors independently and asynchronously emit events when there is a change in their input. Event-based sensing can present significant improvements in power efficiency when compared to traditional sampling, because (1) the output is a stream of events where the important information lies in the timing of the events, and (2) the sensor can easily be controlled to output information only when interesting activity occurs at the input. Moreover, event-based sampling can often provide better resolution than standard uniform sampling. Not only does this occur because individual event-based sensors have higher temporal resolution (Rebecq et al., 2021) it also occurs because the asynchrony of events within a sensor and therefore across sensors allows for less redundant and more informative encoding. We would like to explain how such curious results come about. To do so, we use ideal time encoding machines as a proxy for event-based sensors. We explore time encoding of signals with low rank structure, and apply the resulting theory to video. We then see how the asynchronous firing across time encoding machines can couple spatial sampling density with temporal resolution, leading to better reconstruction, whereas, in frame-based video, temporal resolution depends solely on the frame-rate and spatial resolution solely on the pixel grid used. |
doi_str_mv | 10.1109/TSP.2021.3133709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9645321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9645321</ieee_id><sourcerecordid>2617490379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-dcd169954379ca30809aa0e2162b5ecfa06012c6d33435fa0be9c34c92e994d93</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKt3wUvA89aXvGy28VZK1UJFsVW8hTSbrak20aRF-u_d0uJp5sHM8PgIuWTQYwzUzWz63OPAWQ8ZYgXqiHSYEqwAUcnj1kOJRdmv3k_JWc5LACaEkh3yOMjbYD9SDFs6DjY5k12mo6bx1rtgt7d05leOjoKNtQ8LGhv65msXMzWhppP4W7yY8EmnfhHMVz4nJ00r7uKgXfJ6N5oNH4rJ0_14OJgUFhHXRW1rJpUqBVbKGoQ-KGPAcSb5vHS2MSCBcStrRIFle86dsiis4k4pUSvskuv97neKPxuX13oZN2n3geaSVUJBu9ymYJ-yKeacXKO_k1-ZtNUM9A6abqHpHTR9gNZWrvYV75z7jyspSuQM_wBAZGb7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617490379</pqid></control><display><type>article</type><title>Asynchrony Increases Efficiency: Time Encoding of Videos and Low-Rank Signals</title><source>IEEE/IET Electronic Library</source><creator>Adam, Karen ; Scholefield, Adam ; Vetterli, Martin</creator><creatorcontrib>Adam, Karen ; Scholefield, Adam ; Vetterli, Martin</creatorcontrib><description>In event-based sensing, many sensors independently and asynchronously emit events when there is a change in their input. Event-based sensing can present significant improvements in power efficiency when compared to traditional sampling, because (1) the output is a stream of events where the important information lies in the timing of the events, and (2) the sensor can easily be controlled to output information only when interesting activity occurs at the input. Moreover, event-based sampling can often provide better resolution than standard uniform sampling. Not only does this occur because individual event-based sensors have higher temporal resolution (Rebecq et al., 2021) it also occurs because the asynchrony of events within a sensor and therefore across sensors allows for less redundant and more informative encoding. We would like to explain how such curious results come about. To do so, we use ideal time encoding machines as a proxy for event-based sensors. We explore time encoding of signals with low rank structure, and apply the resulting theory to video. We then see how the asynchronous firing across time encoding machines can couple spatial sampling density with temporal resolution, leading to better reconstruction, whereas, in frame-based video, temporal resolution depends solely on the frame-rate and spatial resolution solely on the pixel grid used.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2021.3133709</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>bandlimited signals ; Bandwidth ; Encoding ; Event-based sensing ; low-rank signals ; Power efficiency ; Sampling ; Sensor phenomena and characterization ; Sensors ; Signal resolution ; Spatial resolution ; Temporal resolution ; time encoding ; video reconstruction ; Videos</subject><ispartof>IEEE transactions on signal processing, 2022, Vol.70, p.105-116</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-dcd169954379ca30809aa0e2162b5ecfa06012c6d33435fa0be9c34c92e994d93</citedby><cites>FETCH-LOGICAL-c333t-dcd169954379ca30809aa0e2162b5ecfa06012c6d33435fa0be9c34c92e994d93</cites><orcidid>0000-0002-1700-6623 ; 0000-0002-6122-1216 ; 0000-0002-5083-2185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9645321$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Adam, Karen</creatorcontrib><creatorcontrib>Scholefield, Adam</creatorcontrib><creatorcontrib>Vetterli, Martin</creatorcontrib><title>Asynchrony Increases Efficiency: Time Encoding of Videos and Low-Rank Signals</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In event-based sensing, many sensors independently and asynchronously emit events when there is a change in their input. Event-based sensing can present significant improvements in power efficiency when compared to traditional sampling, because (1) the output is a stream of events where the important information lies in the timing of the events, and (2) the sensor can easily be controlled to output information only when interesting activity occurs at the input. Moreover, event-based sampling can often provide better resolution than standard uniform sampling. Not only does this occur because individual event-based sensors have higher temporal resolution (Rebecq et al., 2021) it also occurs because the asynchrony of events within a sensor and therefore across sensors allows for less redundant and more informative encoding. We would like to explain how such curious results come about. To do so, we use ideal time encoding machines as a proxy for event-based sensors. We explore time encoding of signals with low rank structure, and apply the resulting theory to video. We then see how the asynchronous firing across time encoding machines can couple spatial sampling density with temporal resolution, leading to better reconstruction, whereas, in frame-based video, temporal resolution depends solely on the frame-rate and spatial resolution solely on the pixel grid used.</description><subject>bandlimited signals</subject><subject>Bandwidth</subject><subject>Encoding</subject><subject>Event-based sensing</subject><subject>low-rank signals</subject><subject>Power efficiency</subject><subject>Sampling</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Signal resolution</subject><subject>Spatial resolution</subject><subject>Temporal resolution</subject><subject>time encoding</subject><subject>video reconstruction</subject><subject>Videos</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEUhIMoWKt3wUvA89aXvGy28VZK1UJFsVW8hTSbrak20aRF-u_d0uJp5sHM8PgIuWTQYwzUzWz63OPAWQ8ZYgXqiHSYEqwAUcnj1kOJRdmv3k_JWc5LACaEkh3yOMjbYD9SDFs6DjY5k12mo6bx1rtgt7d05leOjoKNtQ8LGhv65msXMzWhppP4W7yY8EmnfhHMVz4nJ00r7uKgXfJ6N5oNH4rJ0_14OJgUFhHXRW1rJpUqBVbKGoQ-KGPAcSb5vHS2MSCBcStrRIFle86dsiis4k4pUSvskuv97neKPxuX13oZN2n3geaSVUJBu9ymYJ-yKeacXKO_k1-ZtNUM9A6abqHpHTR9gNZWrvYV75z7jyspSuQM_wBAZGb7</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Adam, Karen</creator><creator>Scholefield, Adam</creator><creator>Vetterli, Martin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1700-6623</orcidid><orcidid>https://orcid.org/0000-0002-6122-1216</orcidid><orcidid>https://orcid.org/0000-0002-5083-2185</orcidid></search><sort><creationdate>2022</creationdate><title>Asynchrony Increases Efficiency: Time Encoding of Videos and Low-Rank Signals</title><author>Adam, Karen ; Scholefield, Adam ; Vetterli, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-dcd169954379ca30809aa0e2162b5ecfa06012c6d33435fa0be9c34c92e994d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bandlimited signals</topic><topic>Bandwidth</topic><topic>Encoding</topic><topic>Event-based sensing</topic><topic>low-rank signals</topic><topic>Power efficiency</topic><topic>Sampling</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Signal resolution</topic><topic>Spatial resolution</topic><topic>Temporal resolution</topic><topic>time encoding</topic><topic>video reconstruction</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adam, Karen</creatorcontrib><creatorcontrib>Scholefield, Adam</creatorcontrib><creatorcontrib>Vetterli, Martin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adam, Karen</au><au>Scholefield, Adam</au><au>Vetterli, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asynchrony Increases Efficiency: Time Encoding of Videos and Low-Rank Signals</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2022</date><risdate>2022</risdate><volume>70</volume><spage>105</spage><epage>116</epage><pages>105-116</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In event-based sensing, many sensors independently and asynchronously emit events when there is a change in their input. Event-based sensing can present significant improvements in power efficiency when compared to traditional sampling, because (1) the output is a stream of events where the important information lies in the timing of the events, and (2) the sensor can easily be controlled to output information only when interesting activity occurs at the input. Moreover, event-based sampling can often provide better resolution than standard uniform sampling. Not only does this occur because individual event-based sensors have higher temporal resolution (Rebecq et al., 2021) it also occurs because the asynchrony of events within a sensor and therefore across sensors allows for less redundant and more informative encoding. We would like to explain how such curious results come about. To do so, we use ideal time encoding machines as a proxy for event-based sensors. We explore time encoding of signals with low rank structure, and apply the resulting theory to video. We then see how the asynchronous firing across time encoding machines can couple spatial sampling density with temporal resolution, leading to better reconstruction, whereas, in frame-based video, temporal resolution depends solely on the frame-rate and spatial resolution solely on the pixel grid used.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2021.3133709</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1700-6623</orcidid><orcidid>https://orcid.org/0000-0002-6122-1216</orcidid><orcidid>https://orcid.org/0000-0002-5083-2185</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2022, Vol.70, p.105-116 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_9645321 |
source | IEEE/IET Electronic Library |
subjects | bandlimited signals Bandwidth Encoding Event-based sensing low-rank signals Power efficiency Sampling Sensor phenomena and characterization Sensors Signal resolution Spatial resolution Temporal resolution time encoding video reconstruction Videos |
title | Asynchrony Increases Efficiency: Time Encoding of Videos and Low-Rank Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asynchrony%20Increases%20Efficiency:%20Time%20Encoding%20of%20Videos%20and%20Low-Rank%20Signals&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Adam,%20Karen&rft.date=2022&rft.volume=70&rft.spage=105&rft.epage=116&rft.pages=105-116&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2021.3133709&rft_dat=%3Cproquest_ieee_%3E2617490379%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617490379&rft_id=info:pmid/&rft_ieee_id=9645321&rfr_iscdi=true |