Hyperspectral Classification via Global-Local Hierarchical Weighting Fusion Network
The fusion of spectral-spatial features based on deep learning has become the focus of research in hyperspectral image (HSI) classification. However, previous deep frameworks based on spectral-spatial fusion usually performed feature aggregation only at the branch ends. Furthermore, only first-order...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2022, Vol.15, p.184-200 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | |
container_start_page | 184 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 15 |
creator | Tu, Bing He, Wangquan He, Wei Ou, Xianfeng Plaza, Antonio |
description | The fusion of spectral-spatial features based on deep learning has become the focus of research in hyperspectral image (HSI) classification. However, previous deep frameworks based on spectral-spatial fusion usually performed feature aggregation only at the branch ends. Furthermore, only first-order statistical features are considered in the fusion process, which is not conducive to improving the discrimination of spectral-spatial features. This article proposes a global-local hierarchical weighted fusion end-to-end classification architecture. The architecture includes two subnetworks for spectral classification and spatial classification. For the spectral subnetwork, two band-grouping strategies are designed, and bidirectional long short-term memory is used to capture spectral context information from global to local perspectives. For the spatial subnetwork, a pooling strategy based on local attention is combined to construct a global-local pooling fusion module to enhance the discriminability of spatial features learned by a convolutional neural network. For the fusion stage, a hierarchical weighting fusion mechanism is developed to obtain the nonlinear relationship between both spectral and spatial features. The experimental results on four real HSI datasets and a GF-5 satellite dataset demonstrate that the method proposed is more competitive in terms of accuracy and generalization. |
doi_str_mv | 10.1109/JSTARS.2021.3133009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9645230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9645230</ieee_id><doaj_id>oai_doaj_org_article_801dd16951544d7da0a0c4b7be5418cc</doaj_id><sourcerecordid>2613373089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-25fdd3bd21692a82e746c1daf72e9a77b025c9e4a48dc6f48be58abefa2be9083</originalsourceid><addsrcrecordid>eNo9UUtv2zAMFooNWNbtF_QSYGen1MuWjkWwNh2CDlg67CjQEp0q9aJMclr038-pi54Ikt-D4MfYBYcF52Avf2zur35tFgIEX0guJYA9YzPBNa-4lvoDm3ErbcUVqE_scyk7gFo0Vs7YZvVyoFwO5IeM_XzZYymxix6HmPbzp4jzmz612Ffr5Mf9KlLG7B_iqflDcfswxP12fn0sJ_gdDc8pP35hHzvsC319q-fs9_X3--WqWv-8uV1erSuvwAyV0F0Isg2C11agEdSo2vOAXSPIYtO0ILS3pFCZ4OtOmZa0wZY6FC1ZMPKc3U66IeHOHXL8i_nFJYzudZDy1mEeou_JGeAhjD6aa6VCExAQvGqbUVJx4_2o9W3SOuT070hlcLt0zPvxfCfq8aONBGNHlJxQPqdSMnXvrhzcKQk3JeFOSbi3JEbWxcSKRPTOsLXSQoL8D5Sbhco</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613373089</pqid></control><display><type>article</type><title>Hyperspectral Classification via Global-Local Hierarchical Weighting Fusion Network</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tu, Bing ; He, Wangquan ; He, Wei ; Ou, Xianfeng ; Plaza, Antonio</creator><creatorcontrib>Tu, Bing ; He, Wangquan ; He, Wei ; Ou, Xianfeng ; Plaza, Antonio</creatorcontrib><description>The fusion of spectral-spatial features based on deep learning has become the focus of research in hyperspectral image (HSI) classification. However, previous deep frameworks based on spectral-spatial fusion usually performed feature aggregation only at the branch ends. Furthermore, only first-order statistical features are considered in the fusion process, which is not conducive to improving the discrimination of spectral-spatial features. This article proposes a global-local hierarchical weighted fusion end-to-end classification architecture. The architecture includes two subnetworks for spectral classification and spatial classification. For the spectral subnetwork, two band-grouping strategies are designed, and bidirectional long short-term memory is used to capture spectral context information from global to local perspectives. For the spatial subnetwork, a pooling strategy based on local attention is combined to construct a global-local pooling fusion module to enhance the discriminability of spatial features learned by a convolutional neural network. For the fusion stage, a hierarchical weighting fusion mechanism is developed to obtain the nonlinear relationship between both spectral and spatial features. The experimental results on four real HSI datasets and a GF-5 satellite dataset demonstrate that the method proposed is more competitive in terms of accuracy and generalization.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3133009</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aggregation ; Artificial neural networks ; Band grouping ; Classification ; Convolutional neural networks ; Datasets ; Deep learning ; deep learning (DL) ; Earth ; Feature extraction ; features fusion ; global–local ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image classification ; Logic gates ; Long short-term memory ; Machine learning ; Neural networks ; Spectra ; Spectral classification ; Task analysis ; Training ; Weighting</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2022, Vol.15, p.184-200</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-25fdd3bd21692a82e746c1daf72e9a77b025c9e4a48dc6f48be58abefa2be9083</citedby><cites>FETCH-LOGICAL-c408t-25fdd3bd21692a82e746c1daf72e9a77b025c9e4a48dc6f48be58abefa2be9083</cites><orcidid>0000-0002-1679-551X ; 0000-0002-9613-1659 ; 0000-0001-5802-9496 ; 0000-0003-4419-7362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Tu, Bing</creatorcontrib><creatorcontrib>He, Wangquan</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Ou, Xianfeng</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><title>Hyperspectral Classification via Global-Local Hierarchical Weighting Fusion Network</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>The fusion of spectral-spatial features based on deep learning has become the focus of research in hyperspectral image (HSI) classification. However, previous deep frameworks based on spectral-spatial fusion usually performed feature aggregation only at the branch ends. Furthermore, only first-order statistical features are considered in the fusion process, which is not conducive to improving the discrimination of spectral-spatial features. This article proposes a global-local hierarchical weighted fusion end-to-end classification architecture. The architecture includes two subnetworks for spectral classification and spatial classification. For the spectral subnetwork, two band-grouping strategies are designed, and bidirectional long short-term memory is used to capture spectral context information from global to local perspectives. For the spatial subnetwork, a pooling strategy based on local attention is combined to construct a global-local pooling fusion module to enhance the discriminability of spatial features learned by a convolutional neural network. For the fusion stage, a hierarchical weighting fusion mechanism is developed to obtain the nonlinear relationship between both spectral and spatial features. The experimental results on four real HSI datasets and a GF-5 satellite dataset demonstrate that the method proposed is more competitive in terms of accuracy and generalization.</description><subject>Aggregation</subject><subject>Artificial neural networks</subject><subject>Band grouping</subject><subject>Classification</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>Earth</subject><subject>Feature extraction</subject><subject>features fusion</subject><subject>global–local</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Logic gates</subject><subject>Long short-term memory</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Spectra</subject><subject>Spectral classification</subject><subject>Task analysis</subject><subject>Training</subject><subject>Weighting</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UUtv2zAMFooNWNbtF_QSYGen1MuWjkWwNh2CDlg67CjQEp0q9aJMclr038-pi54Ikt-D4MfYBYcF52Avf2zur35tFgIEX0guJYA9YzPBNa-4lvoDm3ErbcUVqE_scyk7gFo0Vs7YZvVyoFwO5IeM_XzZYymxix6HmPbzp4jzmz612Ffr5Mf9KlLG7B_iqflDcfswxP12fn0sJ_gdDc8pP35hHzvsC319q-fs9_X3--WqWv-8uV1erSuvwAyV0F0Isg2C11agEdSo2vOAXSPIYtO0ILS3pFCZ4OtOmZa0wZY6FC1ZMPKc3U66IeHOHXL8i_nFJYzudZDy1mEeou_JGeAhjD6aa6VCExAQvGqbUVJx4_2o9W3SOuT070hlcLt0zPvxfCfq8aONBGNHlJxQPqdSMnXvrhzcKQk3JeFOSbi3JEbWxcSKRPTOsLXSQoL8D5Sbhco</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Tu, Bing</creator><creator>He, Wangquan</creator><creator>He, Wei</creator><creator>Ou, Xianfeng</creator><creator>Plaza, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1679-551X</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0001-5802-9496</orcidid><orcidid>https://orcid.org/0000-0003-4419-7362</orcidid></search><sort><creationdate>2022</creationdate><title>Hyperspectral Classification via Global-Local Hierarchical Weighting Fusion Network</title><author>Tu, Bing ; He, Wangquan ; He, Wei ; Ou, Xianfeng ; Plaza, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-25fdd3bd21692a82e746c1daf72e9a77b025c9e4a48dc6f48be58abefa2be9083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregation</topic><topic>Artificial neural networks</topic><topic>Band grouping</topic><topic>Classification</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>Earth</topic><topic>Feature extraction</topic><topic>features fusion</topic><topic>global–local</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Logic gates</topic><topic>Long short-term memory</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Spectra</topic><topic>Spectral classification</topic><topic>Task analysis</topic><topic>Training</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Bing</creatorcontrib><creatorcontrib>He, Wangquan</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Ou, Xianfeng</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Bing</au><au>He, Wangquan</au><au>He, Wei</au><au>Ou, Xianfeng</au><au>Plaza, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Classification via Global-Local Hierarchical Weighting Fusion Network</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2022</date><risdate>2022</risdate><volume>15</volume><spage>184</spage><epage>200</epage><pages>184-200</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>The fusion of spectral-spatial features based on deep learning has become the focus of research in hyperspectral image (HSI) classification. However, previous deep frameworks based on spectral-spatial fusion usually performed feature aggregation only at the branch ends. Furthermore, only first-order statistical features are considered in the fusion process, which is not conducive to improving the discrimination of spectral-spatial features. This article proposes a global-local hierarchical weighted fusion end-to-end classification architecture. The architecture includes two subnetworks for spectral classification and spatial classification. For the spectral subnetwork, two band-grouping strategies are designed, and bidirectional long short-term memory is used to capture spectral context information from global to local perspectives. For the spatial subnetwork, a pooling strategy based on local attention is combined to construct a global-local pooling fusion module to enhance the discriminability of spatial features learned by a convolutional neural network. For the fusion stage, a hierarchical weighting fusion mechanism is developed to obtain the nonlinear relationship between both spectral and spatial features. The experimental results on four real HSI datasets and a GF-5 satellite dataset demonstrate that the method proposed is more competitive in terms of accuracy and generalization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3133009</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1679-551X</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0001-5802-9496</orcidid><orcidid>https://orcid.org/0000-0003-4419-7362</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2022, Vol.15, p.184-200 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_9645230 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Aggregation Artificial neural networks Band grouping Classification Convolutional neural networks Datasets Deep learning deep learning (DL) Earth Feature extraction features fusion global–local hyperspectral image (HSI) Hyperspectral imaging Image classification Logic gates Long short-term memory Machine learning Neural networks Spectra Spectral classification Task analysis Training Weighting |
title | Hyperspectral Classification via Global-Local Hierarchical Weighting Fusion Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Classification%20via%20Global-Local%20Hierarchical%20Weighting%20Fusion%20Network&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Tu,%20Bing&rft.date=2022&rft.volume=15&rft.spage=184&rft.epage=200&rft.pages=184-200&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3133009&rft_dat=%3Cproquest_ieee_%3E2613373089%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613373089&rft_id=info:pmid/&rft_ieee_id=9645230&rft_doaj_id=oai_doaj_org_article_801dd16951544d7da0a0c4b7be5418cc&rfr_iscdi=true |