Robust Model-Dependent Poisson Multi Bernoulli Mixture Trackers for Multistatic Sonar Networks

This work proposes a robust tracker based on the Poisson Multi Bernoulli Mixture (PMBM) filter for multistatic sonar networks (MSNs) systems. The PMBM based trackers estimate the number of targets and provide the target information via Bernoulli and Poisson Point Processes. The PMBM based trackers h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.163612-163624
Hauptverfasser: Ozer, Erhan, Hocaoglu, Ali Koksal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163624
container_issue
container_start_page 163612
container_title IEEE access
container_volume 9
creator Ozer, Erhan
Hocaoglu, Ali Koksal
description This work proposes a robust tracker based on the Poisson Multi Bernoulli Mixture (PMBM) filter for multistatic sonar networks (MSNs) systems. The PMBM based trackers estimate the number of targets and provide the target information via Bernoulli and Poisson Point Processes. The PMBM based trackers handle existing tracks, undetected targets, and new births separately at each computation step by using these two processes together. In practice, the PMBM tracker aims to initiate the track as soon as possible and maintain the track continuity. Initiating track and maintaining track continuity are hard in challenging underwater environments without adapting the algorithm to changing environmental conditions. This paper uses the adaptive measurement-driven birth process and multistatic acoustic model-dependent probability of detection specifications. The adaptive measurement-driven birth process improves the robustness of the track initiation, and the multistatic acoustic model-dependent probability of detection advances the track continuity through the transition regions. These contributions to the PMBM tracker make it robust in terms of tracker performance in challenging underwater environments and acoustic transition regions where it is hard to get an accurate measurement.
doi_str_mv 10.1109/ACCESS.2021.3134173
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9642980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9642980</ieee_id><doaj_id>oai_doaj_org_article_6273aeb45a0b40d3a9cd6196b3b2703e</doaj_id><sourcerecordid>2610984141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8386d772658ce852db427da57f3ed35d64d7e9f4a1503e993ab43a4e074fec703</originalsourceid><addsrcrecordid>eNpNUcFO3DAQjVCRugK-gIslztnaHseOj9stBSS2RSxcaznxpMpuGm9tRy1_j2lWqHOZ0dN7b0bziuKS0SVjVH9ardfX2-2SU86WwEAwBSfFgjOpS6hAfvhv_lhcxLijueoMVWpR_Hj0zRQT2XiHQ_kFDzg6HBN58H2MfiSbaUg9-Yxh9NMw9GTT_01TQPIUbLvHEEnnw0yKyaa-JVs_2kC-Yfrjwz6eF6edHSJeHPtZ8fz1-ml9W95_v7lbr-7LVtA6lTXU0inFZVW3WFfcNYIrZyvVATqonBROoe6EZRUF1BpsI8AKpEp02CoKZ8Xd7Ou83ZlD6H_Z8GK87c0_wIefxoZ83oBGcgUWG1FZ2gjqwOrWSaZlAw3PTpi9rmavQ_C_J4zJ7PwUxny-4TI_vBZMsMyCmdUGH2PA7n0ro-YtFzPnYt5yMcdcsupyVvWI-K7QUnBdU3gFZxyJSg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610984141</pqid></control><display><type>article</type><title>Robust Model-Dependent Poisson Multi Bernoulli Mixture Trackers for Multistatic Sonar Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ozer, Erhan ; Hocaoglu, Ali Koksal</creator><creatorcontrib>Ozer, Erhan ; Hocaoglu, Ali Koksal</creatorcontrib><description>This work proposes a robust tracker based on the Poisson Multi Bernoulli Mixture (PMBM) filter for multistatic sonar networks (MSNs) systems. The PMBM based trackers estimate the number of targets and provide the target information via Bernoulli and Poisson Point Processes. The PMBM based trackers handle existing tracks, undetected targets, and new births separately at each computation step by using these two processes together. In practice, the PMBM tracker aims to initiate the track as soon as possible and maintain the track continuity. Initiating track and maintaining track continuity are hard in challenging underwater environments without adapting the algorithm to changing environmental conditions. This paper uses the adaptive measurement-driven birth process and multistatic acoustic model-dependent probability of detection specifications. The adaptive measurement-driven birth process improves the robustness of the track initiation, and the multistatic acoustic model-dependent probability of detection advances the track continuity through the transition regions. These contributions to the PMBM tracker make it robust in terms of tracker performance in challenging underwater environments and acoustic transition regions where it is hard to get an accurate measurement.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3134173</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustics ; Algorithms ; Mathematical models ; multiple target tracking ; Multistatic sonar networks ; multistatic sonar tracker ; Poisson multi Bernoulli mixture ; Radio frequency ; random finite set ; Receivers ; Robustness ; Sonar ; Sonar measurements ; Target tracking ; Tracking ; trajectory tracker ; Underwater acoustics</subject><ispartof>IEEE access, 2021, Vol.9, p.163612-163624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8386d772658ce852db427da57f3ed35d64d7e9f4a1503e993ab43a4e074fec703</citedby><cites>FETCH-LOGICAL-c408t-8386d772658ce852db427da57f3ed35d64d7e9f4a1503e993ab43a4e074fec703</cites><orcidid>0000-0002-5648-1734 ; 0000-0003-0701-2787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9642980$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ozer, Erhan</creatorcontrib><creatorcontrib>Hocaoglu, Ali Koksal</creatorcontrib><title>Robust Model-Dependent Poisson Multi Bernoulli Mixture Trackers for Multistatic Sonar Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>This work proposes a robust tracker based on the Poisson Multi Bernoulli Mixture (PMBM) filter for multistatic sonar networks (MSNs) systems. The PMBM based trackers estimate the number of targets and provide the target information via Bernoulli and Poisson Point Processes. The PMBM based trackers handle existing tracks, undetected targets, and new births separately at each computation step by using these two processes together. In practice, the PMBM tracker aims to initiate the track as soon as possible and maintain the track continuity. Initiating track and maintaining track continuity are hard in challenging underwater environments without adapting the algorithm to changing environmental conditions. This paper uses the adaptive measurement-driven birth process and multistatic acoustic model-dependent probability of detection specifications. The adaptive measurement-driven birth process improves the robustness of the track initiation, and the multistatic acoustic model-dependent probability of detection advances the track continuity through the transition regions. These contributions to the PMBM tracker make it robust in terms of tracker performance in challenging underwater environments and acoustic transition regions where it is hard to get an accurate measurement.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Mathematical models</subject><subject>multiple target tracking</subject><subject>Multistatic sonar networks</subject><subject>multistatic sonar tracker</subject><subject>Poisson multi Bernoulli mixture</subject><subject>Radio frequency</subject><subject>random finite set</subject><subject>Receivers</subject><subject>Robustness</subject><subject>Sonar</subject><subject>Sonar measurements</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>trajectory tracker</subject><subject>Underwater acoustics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFO3DAQjVCRugK-gIslztnaHseOj9stBSS2RSxcaznxpMpuGm9tRy1_j2lWqHOZ0dN7b0bziuKS0SVjVH9ardfX2-2SU86WwEAwBSfFgjOpS6hAfvhv_lhcxLijueoMVWpR_Hj0zRQT2XiHQ_kFDzg6HBN58H2MfiSbaUg9-Yxh9NMw9GTT_01TQPIUbLvHEEnnw0yKyaa-JVs_2kC-Yfrjwz6eF6edHSJeHPtZ8fz1-ml9W95_v7lbr-7LVtA6lTXU0inFZVW3WFfcNYIrZyvVATqonBROoe6EZRUF1BpsI8AKpEp02CoKZ8Xd7Ou83ZlD6H_Z8GK87c0_wIefxoZ83oBGcgUWG1FZ2gjqwOrWSaZlAw3PTpi9rmavQ_C_J4zJ7PwUxny-4TI_vBZMsMyCmdUGH2PA7n0ro-YtFzPnYt5yMcdcsupyVvWI-K7QUnBdU3gFZxyJSg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ozer, Erhan</creator><creator>Hocaoglu, Ali Koksal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5648-1734</orcidid><orcidid>https://orcid.org/0000-0003-0701-2787</orcidid></search><sort><creationdate>2021</creationdate><title>Robust Model-Dependent Poisson Multi Bernoulli Mixture Trackers for Multistatic Sonar Networks</title><author>Ozer, Erhan ; Hocaoglu, Ali Koksal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8386d772658ce852db427da57f3ed35d64d7e9f4a1503e993ab43a4e074fec703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Mathematical models</topic><topic>multiple target tracking</topic><topic>Multistatic sonar networks</topic><topic>multistatic sonar tracker</topic><topic>Poisson multi Bernoulli mixture</topic><topic>Radio frequency</topic><topic>random finite set</topic><topic>Receivers</topic><topic>Robustness</topic><topic>Sonar</topic><topic>Sonar measurements</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>trajectory tracker</topic><topic>Underwater acoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozer, Erhan</creatorcontrib><creatorcontrib>Hocaoglu, Ali Koksal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozer, Erhan</au><au>Hocaoglu, Ali Koksal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Model-Dependent Poisson Multi Bernoulli Mixture Trackers for Multistatic Sonar Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>163612</spage><epage>163624</epage><pages>163612-163624</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This work proposes a robust tracker based on the Poisson Multi Bernoulli Mixture (PMBM) filter for multistatic sonar networks (MSNs) systems. The PMBM based trackers estimate the number of targets and provide the target information via Bernoulli and Poisson Point Processes. The PMBM based trackers handle existing tracks, undetected targets, and new births separately at each computation step by using these two processes together. In practice, the PMBM tracker aims to initiate the track as soon as possible and maintain the track continuity. Initiating track and maintaining track continuity are hard in challenging underwater environments without adapting the algorithm to changing environmental conditions. This paper uses the adaptive measurement-driven birth process and multistatic acoustic model-dependent probability of detection specifications. The adaptive measurement-driven birth process improves the robustness of the track initiation, and the multistatic acoustic model-dependent probability of detection advances the track continuity through the transition regions. These contributions to the PMBM tracker make it robust in terms of tracker performance in challenging underwater environments and acoustic transition regions where it is hard to get an accurate measurement.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3134173</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5648-1734</orcidid><orcidid>https://orcid.org/0000-0003-0701-2787</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.163612-163624
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9642980
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Acoustics
Algorithms
Mathematical models
multiple target tracking
Multistatic sonar networks
multistatic sonar tracker
Poisson multi Bernoulli mixture
Radio frequency
random finite set
Receivers
Robustness
Sonar
Sonar measurements
Target tracking
Tracking
trajectory tracker
Underwater acoustics
title Robust Model-Dependent Poisson Multi Bernoulli Mixture Trackers for Multistatic Sonar Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Model-Dependent%20Poisson%20Multi%20Bernoulli%20Mixture%20Trackers%20for%20Multistatic%20Sonar%20Networks&rft.jtitle=IEEE%20access&rft.au=Ozer,%20Erhan&rft.date=2021&rft.volume=9&rft.spage=163612&rft.epage=163624&rft.pages=163612-163624&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3134173&rft_dat=%3Cproquest_ieee_%3E2610984141%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610984141&rft_id=info:pmid/&rft_ieee_id=9642980&rft_doaj_id=oai_doaj_org_article_6273aeb45a0b40d3a9cd6196b3b2703e&rfr_iscdi=true