Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics

Flexible memristor is one of the most promising wearable devices for abundant data storage and processing. In this work, interface engineering by inserting the Al 2 O 3 barrier layer is carried out to construct Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) flexible artificial synapse device. The mem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-01, Vol.69 (1), p.375-379
Hauptverfasser: Wu, Facai, Cao, Peng, Peng, Zehui, Ke, Shanwu, Cheng, Gong, Cao, Guangsen, Jiang, Bei, Ye, Cong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 1
container_start_page 375
container_title IEEE transactions on electron devices
container_volume 69
creator Wu, Facai
Cao, Peng
Peng, Zehui
Ke, Shanwu
Cheng, Gong
Cao, Guangsen
Jiang, Bei
Ye, Cong
description Flexible memristor is one of the most promising wearable devices for abundant data storage and processing. In this work, interface engineering by inserting the Al 2 O 3 barrier layer is carried out to construct Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) flexible artificial synapse device. The memristor performance can be maintained even under 1000 times of bending without degradation, demonstrating its excellent mechanical property. With the Al 2 O 3 diffusion barrier layer, the oxygen vacancies ( {V}_{\text {o}} ) movement is slowed down for filaments formation and rupture, thus it boosts up the synaptic plasticity, including long-term potentiation/depression, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). Moreover, on the basis of the enhanced symmetry and linearity of conductance for Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) memristor, the neural network simulation for supervised learning presents an online learning pattern recognition, the accuracy can achieve to 91.15%. Overall, the Pt/TiO x /Al 2 O 3 /Pt/ITO memristor with excellent flexibility is a promising emulator for biological synapses, which could be beneficial to future flexible memristor-based neuromorphic computing.
doi_str_mv 10.1109/TED.2021.3128841
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_9633137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9633137</ieee_id><sourcerecordid>9633137</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-ea2fe5047ae98d79d8c38aa27a316c258b71d9008e2c12f1a5554a8229fcc563</originalsourceid><addsrcrecordid>eNotjEFLwzAYQIMoOKd3wUv-QLd8SdMmx212Kkx7sPfxLf2KkWwtSYX13zvQ0-Md3mPsEcQCQNhlUz0vpJCwUCCNyeGKzUDrMrNFXlyzmRBgMquMumV3KX1ftMhzOWP4Tsfo09hHvsZELe9PvPH1ebkKslZ87QNOFDkmvg109odAfBVH33nnMfDP6YRDIt5d8g_6if2xj8OXd7wK5MbYn7xL9-ymw5Do4Z9z1myrZvOa7eqXt81ql3kQeswIZUda5CWSNW1pW-OUQZQlKiic1OZQQmuFMCQdyA5Qa52jkdJ2zulCzdnT39YT0X6I_ohx2ttCKVCl-gVvv1NO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Facai ; Cao, Peng ; Peng, Zehui ; Ke, Shanwu ; Cheng, Gong ; Cao, Guangsen ; Jiang, Bei ; Ye, Cong</creator><creatorcontrib>Wu, Facai ; Cao, Peng ; Peng, Zehui ; Ke, Shanwu ; Cheng, Gong ; Cao, Guangsen ; Jiang, Bei ; Ye, Cong</creatorcontrib><description>Flexible memristor is one of the most promising wearable devices for abundant data storage and processing. In this work, interface engineering by inserting the Al 2 O 3 barrier layer is carried out to construct Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) flexible artificial synapse device. The memristor performance can be maintained even under 1000 times of bending without degradation, demonstrating its excellent mechanical property. With the Al 2 O 3 diffusion barrier layer, the oxygen vacancies (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{V}_{\text {o}} &lt;/tex-math&gt;&lt;/inline-formula&gt;) movement is slowed down for filaments formation and rupture, thus it boosts up the synaptic plasticity, including long-term potentiation/depression, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). Moreover, on the basis of the enhanced symmetry and linearity of conductance for Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) memristor, the neural network simulation for supervised learning presents an online learning pattern recognition, the accuracy can achieve to 91.15%. Overall, the Pt/TiO x /Al 2 O 3 /Pt/ITO memristor with excellent flexibility is a promising emulator for biological synapses, which could be beneficial to future flexible memristor-based neuromorphic computing.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3128841</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bending ; Flexible ; memristor ; Memristors ; pattern recognition ; Resistance ; Substrates ; Switches ; Synapses ; synaptic plasticity ; Voltage</subject><ispartof>IEEE transactions on electron devices, 2022-01, Vol.69 (1), p.375-379</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2039-1710 ; 0000-0003-4598-6451 ; 0000-0001-7062-9101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9633137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9633137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Facai</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><creatorcontrib>Peng, Zehui</creatorcontrib><creatorcontrib>Ke, Shanwu</creatorcontrib><creatorcontrib>Cheng, Gong</creatorcontrib><creatorcontrib>Cao, Guangsen</creatorcontrib><creatorcontrib>Jiang, Bei</creatorcontrib><creatorcontrib>Ye, Cong</creatorcontrib><title>Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Flexible memristor is one of the most promising wearable devices for abundant data storage and processing. In this work, interface engineering by inserting the Al 2 O 3 barrier layer is carried out to construct Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) flexible artificial synapse device. The memristor performance can be maintained even under 1000 times of bending without degradation, demonstrating its excellent mechanical property. With the Al 2 O 3 diffusion barrier layer, the oxygen vacancies (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{V}_{\text {o}} &lt;/tex-math&gt;&lt;/inline-formula&gt;) movement is slowed down for filaments formation and rupture, thus it boosts up the synaptic plasticity, including long-term potentiation/depression, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). Moreover, on the basis of the enhanced symmetry and linearity of conductance for Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) memristor, the neural network simulation for supervised learning presents an online learning pattern recognition, the accuracy can achieve to 91.15%. Overall, the Pt/TiO x /Al 2 O 3 /Pt/ITO memristor with excellent flexibility is a promising emulator for biological synapses, which could be beneficial to future flexible memristor-based neuromorphic computing.</description><subject>Bending</subject><subject>Flexible</subject><subject>memristor</subject><subject>Memristors</subject><subject>pattern recognition</subject><subject>Resistance</subject><subject>Substrates</subject><subject>Switches</subject><subject>Synapses</subject><subject>synaptic plasticity</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjEFLwzAYQIMoOKd3wUv-QLd8SdMmx212Kkx7sPfxLf2KkWwtSYX13zvQ0-Md3mPsEcQCQNhlUz0vpJCwUCCNyeGKzUDrMrNFXlyzmRBgMquMumV3KX1ftMhzOWP4Tsfo09hHvsZELe9PvPH1ebkKslZ87QNOFDkmvg109odAfBVH33nnMfDP6YRDIt5d8g_6if2xj8OXd7wK5MbYn7xL9-ymw5Do4Z9z1myrZvOa7eqXt81ql3kQeswIZUda5CWSNW1pW-OUQZQlKiic1OZQQmuFMCQdyA5Qa52jkdJ2zulCzdnT39YT0X6I_ohx2ttCKVCl-gVvv1NO</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Wu, Facai</creator><creator>Cao, Peng</creator><creator>Peng, Zehui</creator><creator>Ke, Shanwu</creator><creator>Cheng, Gong</creator><creator>Cao, Guangsen</creator><creator>Jiang, Bei</creator><creator>Ye, Cong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-2039-1710</orcidid><orcidid>https://orcid.org/0000-0003-4598-6451</orcidid><orcidid>https://orcid.org/0000-0001-7062-9101</orcidid></search><sort><creationdate>202201</creationdate><title>Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics</title><author>Wu, Facai ; Cao, Peng ; Peng, Zehui ; Ke, Shanwu ; Cheng, Gong ; Cao, Guangsen ; Jiang, Bei ; Ye, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-ea2fe5047ae98d79d8c38aa27a316c258b71d9008e2c12f1a5554a8229fcc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bending</topic><topic>Flexible</topic><topic>memristor</topic><topic>Memristors</topic><topic>pattern recognition</topic><topic>Resistance</topic><topic>Substrates</topic><topic>Switches</topic><topic>Synapses</topic><topic>synaptic plasticity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Facai</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><creatorcontrib>Peng, Zehui</creatorcontrib><creatorcontrib>Ke, Shanwu</creatorcontrib><creatorcontrib>Cheng, Gong</creatorcontrib><creatorcontrib>Cao, Guangsen</creatorcontrib><creatorcontrib>Jiang, Bei</creatorcontrib><creatorcontrib>Ye, Cong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Facai</au><au>Cao, Peng</au><au>Peng, Zehui</au><au>Ke, Shanwu</au><au>Cheng, Gong</au><au>Cao, Guangsen</au><au>Jiang, Bei</au><au>Ye, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-01</date><risdate>2022</risdate><volume>69</volume><issue>1</issue><spage>375</spage><epage>379</epage><pages>375-379</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Flexible memristor is one of the most promising wearable devices for abundant data storage and processing. In this work, interface engineering by inserting the Al 2 O 3 barrier layer is carried out to construct Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) flexible artificial synapse device. The memristor performance can be maintained even under 1000 times of bending without degradation, demonstrating its excellent mechanical property. With the Al 2 O 3 diffusion barrier layer, the oxygen vacancies (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{V}_{\text {o}} &lt;/tex-math&gt;&lt;/inline-formula&gt;) movement is slowed down for filaments formation and rupture, thus it boosts up the synaptic plasticity, including long-term potentiation/depression, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). Moreover, on the basis of the enhanced symmetry and linearity of conductance for Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) memristor, the neural network simulation for supervised learning presents an online learning pattern recognition, the accuracy can achieve to 91.15%. Overall, the Pt/TiO x /Al 2 O 3 /Pt/ITO memristor with excellent flexibility is a promising emulator for biological synapses, which could be beneficial to future flexible memristor-based neuromorphic computing.</abstract><pub>IEEE</pub><doi>10.1109/TED.2021.3128841</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2039-1710</orcidid><orcidid>https://orcid.org/0000-0003-4598-6451</orcidid><orcidid>https://orcid.org/0000-0001-7062-9101</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-01, Vol.69 (1), p.375-379
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9633137
source IEEE Electronic Library (IEL)
subjects Bending
Flexible
memristor
Memristors
pattern recognition
Resistance
Substrates
Switches
Synapses
synaptic plasticity
Voltage
title Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memristor%20Based%20on%20TiOx/Al2O3%20Bilayer%20as%20Flexible%20Artificial%20Synapse%20for%20Neuromorphic%20Electronics&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Wu,%20Facai&rft.date=2022-01&rft.volume=69&rft.issue=1&rft.spage=375&rft.epage=379&rft.pages=375-379&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3128841&rft_dat=%3Cieee_RIE%3E9633137%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9633137&rfr_iscdi=true