Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics
Flexible memristor is one of the most promising wearable devices for abundant data storage and processing. In this work, interface engineering by inserting the Al 2 O 3 barrier layer is carried out to construct Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) flexible artificial synapse device. The mem...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-01, Vol.69 (1), p.375-379 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 1 |
container_start_page | 375 |
container_title | IEEE transactions on electron devices |
container_volume | 69 |
creator | Wu, Facai Cao, Peng Peng, Zehui Ke, Shanwu Cheng, Gong Cao, Guangsen Jiang, Bei Ye, Cong |
description | Flexible memristor is one of the most promising wearable devices for abundant data storage and processing. In this work, interface engineering by inserting the Al 2 O 3 barrier layer is carried out to construct Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) flexible artificial synapse device. The memristor performance can be maintained even under 1000 times of bending without degradation, demonstrating its excellent mechanical property. With the Al 2 O 3 diffusion barrier layer, the oxygen vacancies ( {V}_{\text {o}} ) movement is slowed down for filaments formation and rupture, thus it boosts up the synaptic plasticity, including long-term potentiation/depression, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). Moreover, on the basis of the enhanced symmetry and linearity of conductance for Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) memristor, the neural network simulation for supervised learning presents an online learning pattern recognition, the accuracy can achieve to 91.15%. Overall, the Pt/TiO x /Al 2 O 3 /Pt/ITO memristor with excellent flexibility is a promising emulator for biological synapses, which could be beneficial to future flexible memristor-based neuromorphic computing. |
doi_str_mv | 10.1109/TED.2021.3128841 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_9633137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9633137</ieee_id><sourcerecordid>9633137</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-ea2fe5047ae98d79d8c38aa27a316c258b71d9008e2c12f1a5554a8229fcc563</originalsourceid><addsrcrecordid>eNotjEFLwzAYQIMoOKd3wUv-QLd8SdMmx212Kkx7sPfxLf2KkWwtSYX13zvQ0-Md3mPsEcQCQNhlUz0vpJCwUCCNyeGKzUDrMrNFXlyzmRBgMquMumV3KX1ftMhzOWP4Tsfo09hHvsZELe9PvPH1ebkKslZ87QNOFDkmvg109odAfBVH33nnMfDP6YRDIt5d8g_6if2xj8OXd7wK5MbYn7xL9-ymw5Do4Z9z1myrZvOa7eqXt81ql3kQeswIZUda5CWSNW1pW-OUQZQlKiic1OZQQmuFMCQdyA5Qa52jkdJ2zulCzdnT39YT0X6I_ohx2ttCKVCl-gVvv1NO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Facai ; Cao, Peng ; Peng, Zehui ; Ke, Shanwu ; Cheng, Gong ; Cao, Guangsen ; Jiang, Bei ; Ye, Cong</creator><creatorcontrib>Wu, Facai ; Cao, Peng ; Peng, Zehui ; Ke, Shanwu ; Cheng, Gong ; Cao, Guangsen ; Jiang, Bei ; Ye, Cong</creatorcontrib><description>Flexible memristor is one of the most promising wearable devices for abundant data storage and processing. In this work, interface engineering by inserting the Al 2 O 3 barrier layer is carried out to construct Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) flexible artificial synapse device. The memristor performance can be maintained even under 1000 times of bending without degradation, demonstrating its excellent mechanical property. With the Al 2 O 3 diffusion barrier layer, the oxygen vacancies (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {o}} </tex-math></inline-formula>) movement is slowed down for filaments formation and rupture, thus it boosts up the synaptic plasticity, including long-term potentiation/depression, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). Moreover, on the basis of the enhanced symmetry and linearity of conductance for Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) memristor, the neural network simulation for supervised learning presents an online learning pattern recognition, the accuracy can achieve to 91.15%. Overall, the Pt/TiO x /Al 2 O 3 /Pt/ITO memristor with excellent flexibility is a promising emulator for biological synapses, which could be beneficial to future flexible memristor-based neuromorphic computing.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3128841</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bending ; Flexible ; memristor ; Memristors ; pattern recognition ; Resistance ; Substrates ; Switches ; Synapses ; synaptic plasticity ; Voltage</subject><ispartof>IEEE transactions on electron devices, 2022-01, Vol.69 (1), p.375-379</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2039-1710 ; 0000-0003-4598-6451 ; 0000-0001-7062-9101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9633137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9633137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Facai</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><creatorcontrib>Peng, Zehui</creatorcontrib><creatorcontrib>Ke, Shanwu</creatorcontrib><creatorcontrib>Cheng, Gong</creatorcontrib><creatorcontrib>Cao, Guangsen</creatorcontrib><creatorcontrib>Jiang, Bei</creatorcontrib><creatorcontrib>Ye, Cong</creatorcontrib><title>Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Flexible memristor is one of the most promising wearable devices for abundant data storage and processing. In this work, interface engineering by inserting the Al 2 O 3 barrier layer is carried out to construct Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) flexible artificial synapse device. The memristor performance can be maintained even under 1000 times of bending without degradation, demonstrating its excellent mechanical property. With the Al 2 O 3 diffusion barrier layer, the oxygen vacancies (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {o}} </tex-math></inline-formula>) movement is slowed down for filaments formation and rupture, thus it boosts up the synaptic plasticity, including long-term potentiation/depression, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). Moreover, on the basis of the enhanced symmetry and linearity of conductance for Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) memristor, the neural network simulation for supervised learning presents an online learning pattern recognition, the accuracy can achieve to 91.15%. Overall, the Pt/TiO x /Al 2 O 3 /Pt/ITO memristor with excellent flexibility is a promising emulator for biological synapses, which could be beneficial to future flexible memristor-based neuromorphic computing.</description><subject>Bending</subject><subject>Flexible</subject><subject>memristor</subject><subject>Memristors</subject><subject>pattern recognition</subject><subject>Resistance</subject><subject>Substrates</subject><subject>Switches</subject><subject>Synapses</subject><subject>synaptic plasticity</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjEFLwzAYQIMoOKd3wUv-QLd8SdMmx212Kkx7sPfxLf2KkWwtSYX13zvQ0-Md3mPsEcQCQNhlUz0vpJCwUCCNyeGKzUDrMrNFXlyzmRBgMquMumV3KX1ftMhzOWP4Tsfo09hHvsZELe9PvPH1ebkKslZ87QNOFDkmvg109odAfBVH33nnMfDP6YRDIt5d8g_6if2xj8OXd7wK5MbYn7xL9-ymw5Do4Z9z1myrZvOa7eqXt81ql3kQeswIZUda5CWSNW1pW-OUQZQlKiic1OZQQmuFMCQdyA5Qa52jkdJ2zulCzdnT39YT0X6I_ohx2ttCKVCl-gVvv1NO</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Wu, Facai</creator><creator>Cao, Peng</creator><creator>Peng, Zehui</creator><creator>Ke, Shanwu</creator><creator>Cheng, Gong</creator><creator>Cao, Guangsen</creator><creator>Jiang, Bei</creator><creator>Ye, Cong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-2039-1710</orcidid><orcidid>https://orcid.org/0000-0003-4598-6451</orcidid><orcidid>https://orcid.org/0000-0001-7062-9101</orcidid></search><sort><creationdate>202201</creationdate><title>Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics</title><author>Wu, Facai ; Cao, Peng ; Peng, Zehui ; Ke, Shanwu ; Cheng, Gong ; Cao, Guangsen ; Jiang, Bei ; Ye, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-ea2fe5047ae98d79d8c38aa27a316c258b71d9008e2c12f1a5554a8229fcc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bending</topic><topic>Flexible</topic><topic>memristor</topic><topic>Memristors</topic><topic>pattern recognition</topic><topic>Resistance</topic><topic>Substrates</topic><topic>Switches</topic><topic>Synapses</topic><topic>synaptic plasticity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Facai</creatorcontrib><creatorcontrib>Cao, Peng</creatorcontrib><creatorcontrib>Peng, Zehui</creatorcontrib><creatorcontrib>Ke, Shanwu</creatorcontrib><creatorcontrib>Cheng, Gong</creatorcontrib><creatorcontrib>Cao, Guangsen</creatorcontrib><creatorcontrib>Jiang, Bei</creatorcontrib><creatorcontrib>Ye, Cong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Facai</au><au>Cao, Peng</au><au>Peng, Zehui</au><au>Ke, Shanwu</au><au>Cheng, Gong</au><au>Cao, Guangsen</au><au>Jiang, Bei</au><au>Ye, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-01</date><risdate>2022</risdate><volume>69</volume><issue>1</issue><spage>375</spage><epage>379</epage><pages>375-379</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Flexible memristor is one of the most promising wearable devices for abundant data storage and processing. In this work, interface engineering by inserting the Al 2 O 3 barrier layer is carried out to construct Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) flexible artificial synapse device. The memristor performance can be maintained even under 1000 times of bending without degradation, demonstrating its excellent mechanical property. With the Al 2 O 3 diffusion barrier layer, the oxygen vacancies (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {o}} </tex-math></inline-formula>) movement is slowed down for filaments formation and rupture, thus it boosts up the synaptic plasticity, including long-term potentiation/depression, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). Moreover, on the basis of the enhanced symmetry and linearity of conductance for Pt/TiO x /Al 2 O 3 /Pt/indium tin oxide (ITO) memristor, the neural network simulation for supervised learning presents an online learning pattern recognition, the accuracy can achieve to 91.15%. Overall, the Pt/TiO x /Al 2 O 3 /Pt/ITO memristor with excellent flexibility is a promising emulator for biological synapses, which could be beneficial to future flexible memristor-based neuromorphic computing.</abstract><pub>IEEE</pub><doi>10.1109/TED.2021.3128841</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2039-1710</orcidid><orcidid>https://orcid.org/0000-0003-4598-6451</orcidid><orcidid>https://orcid.org/0000-0001-7062-9101</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2022-01, Vol.69 (1), p.375-379 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_9633137 |
source | IEEE Electronic Library (IEL) |
subjects | Bending Flexible memristor Memristors pattern recognition Resistance Substrates Switches Synapses synaptic plasticity Voltage |
title | Memristor Based on TiOx/Al2O3 Bilayer as Flexible Artificial Synapse for Neuromorphic Electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memristor%20Based%20on%20TiOx/Al2O3%20Bilayer%20as%20Flexible%20Artificial%20Synapse%20for%20Neuromorphic%20Electronics&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Wu,%20Facai&rft.date=2022-01&rft.volume=69&rft.issue=1&rft.spage=375&rft.epage=379&rft.pages=375-379&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3128841&rft_dat=%3Cieee_RIE%3E9633137%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9633137&rfr_iscdi=true |