FaceHack: Attacking Facial Recognition Systems Using Malicious Facial Characteristics

Recent advances in machine learning have opened up new avenues for its extensive use in real-world applications. Facial recognition, specifically, is used from simple friend suggestions in social-media platforms to critical security applications for biometric validation in automated border control a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biometrics, behavior, and identity science behavior, and identity science, 2022-07, Vol.4 (3), p.361-372
Hauptverfasser: Sarkar, Esha, Benkraouda, Hadjer, Krishnan, Gopika, Gamil, Homer, Maniatakos, Michail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 3
container_start_page 361
container_title IEEE transactions on biometrics, behavior, and identity science
container_volume 4
creator Sarkar, Esha
Benkraouda, Hadjer
Krishnan, Gopika
Gamil, Homer
Maniatakos, Michail
description Recent advances in machine learning have opened up new avenues for its extensive use in real-world applications. Facial recognition, specifically, is used from simple friend suggestions in social-media platforms to critical security applications for biometric validation in automated border control at airports. Considering these scenarios, security vulnerabilities of such facial recognition systems pose serious threats with severe outcomes. Recent work demonstrated that Deep Neural Networks (DNNs), typically used in facial recognition systems, are susceptible to backdoor attacks; in other words, the DNNs turn malicious in the presence of a unique trigger. Detection mechanisms have focused on identifying these distinct trigger-based outliers statistically or through reconstructing them. In this work, we propose the use of facial characteristics as triggers to backdoored facial recognition systems. Additionally, we demonstrate that these attacks can be realised on real-time facial recognition systems. Depending on the attack scenario, the changes in the facial attributes may be embedded artificially using social-media filters or introduced naturally through facial muscle movements. We evaluate the success of the attack and validate that it does not interfere with the performance criteria of the model. We also substantiate that our triggers are undetectable by thoroughly testing them on state-of-the-art defense and detection mechanisms.
doi_str_mv 10.1109/TBIOM.2021.3132132
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9632692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9632692</ieee_id><sourcerecordid>2691875859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3b410311836a7bfe7410b870de554ecb29247fb10db6562f06bca63778775b973</originalsourceid><addsrcrecordid>eNpNUE1PAjEQbYwmEuQP6GUTz4v92LZbb0hUSCAkCuemLV0sLrvYlgP_3uKiMXnJm5m8N5N5ANwiOEQIiofl03QxH2KI0ZAgghMuQA8zwnNWQH75r74GgxC2EEIMC5HQA6sXZexEmc_HbBRjYtdssjRzqs7erGk3jYuubbL3Y4h2F7JVOAnmqnbGtYfwKx1_KK9MtN6F6Ey4AVeVqoMdnLmf7jwvx5N8tnidjkez3GBBY050gSBBqCRMcV1Znlpdcri2lBbWaCxwwSuN4FozynAFmTYq_cJLzqkWnPTBfbd379uvgw1RbtuDb9JJiZlAJaclFUmFO5XxbQjeVnLv3U75o0RQnhKUPwnKU4LynGAy3XUmZ639MwhG0mJMvgF7Gmt4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691875859</pqid></control><display><type>article</type><title>FaceHack: Attacking Facial Recognition Systems Using Malicious Facial Characteristics</title><source>IEEE Electronic Library (IEL)</source><creator>Sarkar, Esha ; Benkraouda, Hadjer ; Krishnan, Gopika ; Gamil, Homer ; Maniatakos, Michail</creator><creatorcontrib>Sarkar, Esha ; Benkraouda, Hadjer ; Krishnan, Gopika ; Gamil, Homer ; Maniatakos, Michail</creatorcontrib><description>Recent advances in machine learning have opened up new avenues for its extensive use in real-world applications. Facial recognition, specifically, is used from simple friend suggestions in social-media platforms to critical security applications for biometric validation in automated border control at airports. Considering these scenarios, security vulnerabilities of such facial recognition systems pose serious threats with severe outcomes. Recent work demonstrated that Deep Neural Networks (DNNs), typically used in facial recognition systems, are susceptible to backdoor attacks; in other words, the DNNs turn malicious in the presence of a unique trigger. Detection mechanisms have focused on identifying these distinct trigger-based outliers statistically or through reconstructing them. In this work, we propose the use of facial characteristics as triggers to backdoored facial recognition systems. Additionally, we demonstrate that these attacks can be realised on real-time facial recognition systems. Depending on the attack scenario, the changes in the facial attributes may be embedded artificially using social-media filters or introduced naturally through facial muscle movements. We evaluate the success of the attack and validate that it does not interfere with the performance criteria of the model. We also substantiate that our triggers are undetectable by thoroughly testing them on state-of-the-art defense and detection mechanisms.</description><identifier>ISSN: 2637-6407</identifier><identifier>EISSN: 2637-6407</identifier><identifier>DOI: 10.1109/TBIOM.2021.3132132</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Airline security ; Airports ; Artificial neural networks ; attack ; Automatic control ; backdoor ; Computational modeling ; Data analysis ; Data models ; Face recognition ; facial recognition ; Facial recognition technology ; Machine learning ; Muscles ; Neurons ; Outliers (statistics) ; privacy ; Real-time systems ; Security ; Shape ; Training ; trojan</subject><ispartof>IEEE transactions on biometrics, behavior, and identity science, 2022-07, Vol.4 (3), p.361-372</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3b410311836a7bfe7410b870de554ecb29247fb10db6562f06bca63778775b973</citedby><cites>FETCH-LOGICAL-c295t-3b410311836a7bfe7410b870de554ecb29247fb10db6562f06bca63778775b973</cites><orcidid>0000-0001-5511-3182 ; 0000-0003-3646-2920 ; 0000-0001-6899-0651 ; 0000-0003-3256-783X ; 0000-0002-4473-7368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9632692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9632692$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sarkar, Esha</creatorcontrib><creatorcontrib>Benkraouda, Hadjer</creatorcontrib><creatorcontrib>Krishnan, Gopika</creatorcontrib><creatorcontrib>Gamil, Homer</creatorcontrib><creatorcontrib>Maniatakos, Michail</creatorcontrib><title>FaceHack: Attacking Facial Recognition Systems Using Malicious Facial Characteristics</title><title>IEEE transactions on biometrics, behavior, and identity science</title><addtitle>TBIOM</addtitle><description>Recent advances in machine learning have opened up new avenues for its extensive use in real-world applications. Facial recognition, specifically, is used from simple friend suggestions in social-media platforms to critical security applications for biometric validation in automated border control at airports. Considering these scenarios, security vulnerabilities of such facial recognition systems pose serious threats with severe outcomes. Recent work demonstrated that Deep Neural Networks (DNNs), typically used in facial recognition systems, are susceptible to backdoor attacks; in other words, the DNNs turn malicious in the presence of a unique trigger. Detection mechanisms have focused on identifying these distinct trigger-based outliers statistically or through reconstructing them. In this work, we propose the use of facial characteristics as triggers to backdoored facial recognition systems. Additionally, we demonstrate that these attacks can be realised on real-time facial recognition systems. Depending on the attack scenario, the changes in the facial attributes may be embedded artificially using social-media filters or introduced naturally through facial muscle movements. We evaluate the success of the attack and validate that it does not interfere with the performance criteria of the model. We also substantiate that our triggers are undetectable by thoroughly testing them on state-of-the-art defense and detection mechanisms.</description><subject>Airline security</subject><subject>Airports</subject><subject>Artificial neural networks</subject><subject>attack</subject><subject>Automatic control</subject><subject>backdoor</subject><subject>Computational modeling</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Face recognition</subject><subject>facial recognition</subject><subject>Facial recognition technology</subject><subject>Machine learning</subject><subject>Muscles</subject><subject>Neurons</subject><subject>Outliers (statistics)</subject><subject>privacy</subject><subject>Real-time systems</subject><subject>Security</subject><subject>Shape</subject><subject>Training</subject><subject>trojan</subject><issn>2637-6407</issn><issn>2637-6407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1PAjEQbYwmEuQP6GUTz4v92LZbb0hUSCAkCuemLV0sLrvYlgP_3uKiMXnJm5m8N5N5ANwiOEQIiofl03QxH2KI0ZAgghMuQA8zwnNWQH75r74GgxC2EEIMC5HQA6sXZexEmc_HbBRjYtdssjRzqs7erGk3jYuubbL3Y4h2F7JVOAnmqnbGtYfwKx1_KK9MtN6F6Ey4AVeVqoMdnLmf7jwvx5N8tnidjkez3GBBY050gSBBqCRMcV1Znlpdcri2lBbWaCxwwSuN4FozynAFmTYq_cJLzqkWnPTBfbd379uvgw1RbtuDb9JJiZlAJaclFUmFO5XxbQjeVnLv3U75o0RQnhKUPwnKU4LynGAy3XUmZ639MwhG0mJMvgF7Gmt4</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Sarkar, Esha</creator><creator>Benkraouda, Hadjer</creator><creator>Krishnan, Gopika</creator><creator>Gamil, Homer</creator><creator>Maniatakos, Michail</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5511-3182</orcidid><orcidid>https://orcid.org/0000-0003-3646-2920</orcidid><orcidid>https://orcid.org/0000-0001-6899-0651</orcidid><orcidid>https://orcid.org/0000-0003-3256-783X</orcidid><orcidid>https://orcid.org/0000-0002-4473-7368</orcidid></search><sort><creationdate>20220701</creationdate><title>FaceHack: Attacking Facial Recognition Systems Using Malicious Facial Characteristics</title><author>Sarkar, Esha ; Benkraouda, Hadjer ; Krishnan, Gopika ; Gamil, Homer ; Maniatakos, Michail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3b410311836a7bfe7410b870de554ecb29247fb10db6562f06bca63778775b973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Airline security</topic><topic>Airports</topic><topic>Artificial neural networks</topic><topic>attack</topic><topic>Automatic control</topic><topic>backdoor</topic><topic>Computational modeling</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Face recognition</topic><topic>facial recognition</topic><topic>Facial recognition technology</topic><topic>Machine learning</topic><topic>Muscles</topic><topic>Neurons</topic><topic>Outliers (statistics)</topic><topic>privacy</topic><topic>Real-time systems</topic><topic>Security</topic><topic>Shape</topic><topic>Training</topic><topic>trojan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Esha</creatorcontrib><creatorcontrib>Benkraouda, Hadjer</creatorcontrib><creatorcontrib>Krishnan, Gopika</creatorcontrib><creatorcontrib>Gamil, Homer</creatorcontrib><creatorcontrib>Maniatakos, Michail</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on biometrics, behavior, and identity science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sarkar, Esha</au><au>Benkraouda, Hadjer</au><au>Krishnan, Gopika</au><au>Gamil, Homer</au><au>Maniatakos, Michail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FaceHack: Attacking Facial Recognition Systems Using Malicious Facial Characteristics</atitle><jtitle>IEEE transactions on biometrics, behavior, and identity science</jtitle><stitle>TBIOM</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>4</volume><issue>3</issue><spage>361</spage><epage>372</epage><pages>361-372</pages><issn>2637-6407</issn><eissn>2637-6407</eissn><abstract>Recent advances in machine learning have opened up new avenues for its extensive use in real-world applications. Facial recognition, specifically, is used from simple friend suggestions in social-media platforms to critical security applications for biometric validation in automated border control at airports. Considering these scenarios, security vulnerabilities of such facial recognition systems pose serious threats with severe outcomes. Recent work demonstrated that Deep Neural Networks (DNNs), typically used in facial recognition systems, are susceptible to backdoor attacks; in other words, the DNNs turn malicious in the presence of a unique trigger. Detection mechanisms have focused on identifying these distinct trigger-based outliers statistically or through reconstructing them. In this work, we propose the use of facial characteristics as triggers to backdoored facial recognition systems. Additionally, we demonstrate that these attacks can be realised on real-time facial recognition systems. Depending on the attack scenario, the changes in the facial attributes may be embedded artificially using social-media filters or introduced naturally through facial muscle movements. We evaluate the success of the attack and validate that it does not interfere with the performance criteria of the model. We also substantiate that our triggers are undetectable by thoroughly testing them on state-of-the-art defense and detection mechanisms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TBIOM.2021.3132132</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5511-3182</orcidid><orcidid>https://orcid.org/0000-0003-3646-2920</orcidid><orcidid>https://orcid.org/0000-0001-6899-0651</orcidid><orcidid>https://orcid.org/0000-0003-3256-783X</orcidid><orcidid>https://orcid.org/0000-0002-4473-7368</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2637-6407
ispartof IEEE transactions on biometrics, behavior, and identity science, 2022-07, Vol.4 (3), p.361-372
issn 2637-6407
2637-6407
language eng
recordid cdi_ieee_primary_9632692
source IEEE Electronic Library (IEL)
subjects Airline security
Airports
Artificial neural networks
attack
Automatic control
backdoor
Computational modeling
Data analysis
Data models
Face recognition
facial recognition
Facial recognition technology
Machine learning
Muscles
Neurons
Outliers (statistics)
privacy
Real-time systems
Security
Shape
Training
trojan
title FaceHack: Attacking Facial Recognition Systems Using Malicious Facial Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FaceHack:%20Attacking%20Facial%20Recognition%20Systems%20Using%20Malicious%20Facial%20Characteristics&rft.jtitle=IEEE%20transactions%20on%20biometrics,%20behavior,%20and%20identity%20science&rft.au=Sarkar,%20Esha&rft.date=2022-07-01&rft.volume=4&rft.issue=3&rft.spage=361&rft.epage=372&rft.pages=361-372&rft.issn=2637-6407&rft.eissn=2637-6407&rft_id=info:doi/10.1109/TBIOM.2021.3132132&rft_dat=%3Cproquest_RIE%3E2691875859%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691875859&rft_id=info:pmid/&rft_ieee_id=9632692&rfr_iscdi=true