A High-Efficiency Dual-Polarity Thermoelectric Energy-Harvesting Interface Circuit With Cold Startup and Fast-Searching ZCD

This article presents an auto-polarity thermoelectric energy-harvesting interface circuit based on a single-inductor boost/buck-boost hybrid converter. The power stage is configured automatically as a boost converter for a positive input voltage or a buck-boost converter for a negative input voltage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2022-06, Vol.57 (6), p.1899-1912
Hauptverfasser: Kuai, Qin, Leung, Ho-Yin, Wan, Qiping, Mok, Philip K. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1912
container_issue 6
container_start_page 1899
container_title IEEE journal of solid-state circuits
container_volume 57
creator Kuai, Qin
Leung, Ho-Yin
Wan, Qiping
Mok, Philip K. T.
description This article presents an auto-polarity thermoelectric energy-harvesting interface circuit based on a single-inductor boost/buck-boost hybrid converter. The power stage is configured automatically as a boost converter for a positive input voltage or a buck-boost converter for a negative input voltage. A collaborative efficiency-improving scheme of frequency selection and maximum power point tracking (MPPT) is implemented for input power ranging from 1 to 800 \mu \text{W} . An improved digital zero-current detection (ZCD) technique with fast searching is proposed to turn off power switches accurately. Dual-polarity cold startup is realized with the aid of a pair of cross-coupled Dickson charge pumps. This work is fabricated with a 0.13- \mu \text{m} CMOS process. From the measured results, the interface starts up from a 140- or −160-mV thermoelectric generator (TEG) voltage. It boosts input voltages ranging from 10 mV to 0.4 V and from −10 mV to −0.4 V to a 1.2-V output voltage. It achieves a peak end-to-end efficiency of 90% with a 0.3-V input voltage or 88% with a −0.4-V input voltage. Moreover, end-to-end efficiencies are higher than 80% for input voltages from 90 mV to 0.4 V and from −110 mV to −0.4 V.
doi_str_mv 10.1109/JSSC.2021.3128625
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9628171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9628171</ieee_id><sourcerecordid>2669161015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-34222b8df5e85de0ca3a13dde19ab25410a77e8149eee9b8060bf51788e4cb773</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Lx1Z_O1OZa0tZWCQiuKl7DZTNotaVI3GyH4501p8TQMvM-8w0PIPfARAI-fXlarZCS4gJEHQoYiuCADCALJIPI-L8mAc5AsFpxfk5um2fWr70sYkN8xnZvNlk2LwmiDle7opFUle6tLZY3r6HqLdl9jidpZo-m0Qrvp2FzZH2ycqTZ0UTm0hdJIE2N1axz9MG5Lk7rM6cop69oDVVVOZ6pxbIXK6u0R-0omt-SqUGWDd-c5JO-z6TqZs-Xr8yIZL5kWseeY5wshMpkXAcogR66Vp8DLc4RYZSLwgasoQgl-jIhxJnnIsyKASEr0dRZF3pA8nu4ebP3d9m-nu7q1VV-ZijCMIQQOQZ-CU0rbumksFunBmr2yXQo8PTpOj47To-P07LhnHk6M6av_83EoJETg_QHIcnip</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669161015</pqid></control><display><type>article</type><title>A High-Efficiency Dual-Polarity Thermoelectric Energy-Harvesting Interface Circuit With Cold Startup and Fast-Searching ZCD</title><source>IEEE Xplore</source><creator>Kuai, Qin ; Leung, Ho-Yin ; Wan, Qiping ; Mok, Philip K. T.</creator><creatorcontrib>Kuai, Qin ; Leung, Ho-Yin ; Wan, Qiping ; Mok, Philip K. T.</creatorcontrib><description><![CDATA[This article presents an auto-polarity thermoelectric energy-harvesting interface circuit based on a single-inductor boost/buck-boost hybrid converter. The power stage is configured automatically as a boost converter for a positive input voltage or a buck-boost converter for a negative input voltage. A collaborative efficiency-improving scheme of frequency selection and maximum power point tracking (MPPT) is implemented for input power ranging from 1 to 800 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>. An improved digital zero-current detection (ZCD) technique with fast searching is proposed to turn off power switches accurately. Dual-polarity cold startup is realized with the aid of a pair of cross-coupled Dickson charge pumps. This work is fabricated with a 0.13-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS process. From the measured results, the interface starts up from a 140- or −160-mV thermoelectric generator (TEG) voltage. It boosts input voltages ranging from 10 mV to 0.4 V and from −10 mV to −0.4 V to a 1.2-V output voltage. It achieves a peak end-to-end efficiency of 90% with a 0.3-V input voltage or 88% with a −0.4-V input voltage. Moreover, end-to-end efficiencies are higher than 80% for input voltages from 90 mV to 0.4 V and from −110 mV to −0.4 V.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2021.3128625</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Auto-polarity ; boost ; buck–boost ; Capacitors ; Charge pumps ; Circuits ; Clocks ; Cold starts ; cold startup ; Converters ; dual-polarity ; Efficiency ; Electric potential ; Energy harvesting ; frequency selection ; maximum power point tracking (MPPT) ; Maximum power tracking ; Searching ; Switches ; Temperature measurement ; thermoelectric generator (TEG) ; Thermoelectric generators ; Thermoelectricity ; Transformers ; Transistors ; Voltage ; zero-current detection (ZCD)</subject><ispartof>IEEE journal of solid-state circuits, 2022-06, Vol.57 (6), p.1899-1912</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-34222b8df5e85de0ca3a13dde19ab25410a77e8149eee9b8060bf51788e4cb773</citedby><cites>FETCH-LOGICAL-c293t-34222b8df5e85de0ca3a13dde19ab25410a77e8149eee9b8060bf51788e4cb773</cites><orcidid>0000-0001-9858-8604 ; 0000-0002-1981-3680 ; 0000-0002-8448-4844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9628171$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9628171$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuai, Qin</creatorcontrib><creatorcontrib>Leung, Ho-Yin</creatorcontrib><creatorcontrib>Wan, Qiping</creatorcontrib><creatorcontrib>Mok, Philip K. T.</creatorcontrib><title>A High-Efficiency Dual-Polarity Thermoelectric Energy-Harvesting Interface Circuit With Cold Startup and Fast-Searching ZCD</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This article presents an auto-polarity thermoelectric energy-harvesting interface circuit based on a single-inductor boost/buck-boost hybrid converter. The power stage is configured automatically as a boost converter for a positive input voltage or a buck-boost converter for a negative input voltage. A collaborative efficiency-improving scheme of frequency selection and maximum power point tracking (MPPT) is implemented for input power ranging from 1 to 800 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>. An improved digital zero-current detection (ZCD) technique with fast searching is proposed to turn off power switches accurately. Dual-polarity cold startup is realized with the aid of a pair of cross-coupled Dickson charge pumps. This work is fabricated with a 0.13-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS process. From the measured results, the interface starts up from a 140- or −160-mV thermoelectric generator (TEG) voltage. It boosts input voltages ranging from 10 mV to 0.4 V and from −10 mV to −0.4 V to a 1.2-V output voltage. It achieves a peak end-to-end efficiency of 90% with a 0.3-V input voltage or 88% with a −0.4-V input voltage. Moreover, end-to-end efficiencies are higher than 80% for input voltages from 90 mV to 0.4 V and from −110 mV to −0.4 V.]]></description><subject>Auto-polarity</subject><subject>boost</subject><subject>buck–boost</subject><subject>Capacitors</subject><subject>Charge pumps</subject><subject>Circuits</subject><subject>Clocks</subject><subject>Cold starts</subject><subject>cold startup</subject><subject>Converters</subject><subject>dual-polarity</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Energy harvesting</subject><subject>frequency selection</subject><subject>maximum power point tracking (MPPT)</subject><subject>Maximum power tracking</subject><subject>Searching</subject><subject>Switches</subject><subject>Temperature measurement</subject><subject>thermoelectric generator (TEG)</subject><subject>Thermoelectric generators</subject><subject>Thermoelectricity</subject><subject>Transformers</subject><subject>Transistors</subject><subject>Voltage</subject><subject>zero-current detection (ZCD)</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Lx1Z_O1OZa0tZWCQiuKl7DZTNotaVI3GyH4501p8TQMvM-8w0PIPfARAI-fXlarZCS4gJEHQoYiuCADCALJIPI-L8mAc5AsFpxfk5um2fWr70sYkN8xnZvNlk2LwmiDle7opFUle6tLZY3r6HqLdl9jidpZo-m0Qrvp2FzZH2ycqTZ0UTm0hdJIE2N1axz9MG5Lk7rM6cop69oDVVVOZ6pxbIXK6u0R-0omt-SqUGWDd-c5JO-z6TqZs-Xr8yIZL5kWseeY5wshMpkXAcogR66Vp8DLc4RYZSLwgasoQgl-jIhxJnnIsyKASEr0dRZF3pA8nu4ebP3d9m-nu7q1VV-ZijCMIQQOQZ-CU0rbumksFunBmr2yXQo8PTpOj47To-P07LhnHk6M6av_83EoJETg_QHIcnip</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Kuai, Qin</creator><creator>Leung, Ho-Yin</creator><creator>Wan, Qiping</creator><creator>Mok, Philip K. T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9858-8604</orcidid><orcidid>https://orcid.org/0000-0002-1981-3680</orcidid><orcidid>https://orcid.org/0000-0002-8448-4844</orcidid></search><sort><creationdate>202206</creationdate><title>A High-Efficiency Dual-Polarity Thermoelectric Energy-Harvesting Interface Circuit With Cold Startup and Fast-Searching ZCD</title><author>Kuai, Qin ; Leung, Ho-Yin ; Wan, Qiping ; Mok, Philip K. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-34222b8df5e85de0ca3a13dde19ab25410a77e8149eee9b8060bf51788e4cb773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Auto-polarity</topic><topic>boost</topic><topic>buck–boost</topic><topic>Capacitors</topic><topic>Charge pumps</topic><topic>Circuits</topic><topic>Clocks</topic><topic>Cold starts</topic><topic>cold startup</topic><topic>Converters</topic><topic>dual-polarity</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Energy harvesting</topic><topic>frequency selection</topic><topic>maximum power point tracking (MPPT)</topic><topic>Maximum power tracking</topic><topic>Searching</topic><topic>Switches</topic><topic>Temperature measurement</topic><topic>thermoelectric generator (TEG)</topic><topic>Thermoelectric generators</topic><topic>Thermoelectricity</topic><topic>Transformers</topic><topic>Transistors</topic><topic>Voltage</topic><topic>zero-current detection (ZCD)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuai, Qin</creatorcontrib><creatorcontrib>Leung, Ho-Yin</creatorcontrib><creatorcontrib>Wan, Qiping</creatorcontrib><creatorcontrib>Mok, Philip K. T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuai, Qin</au><au>Leung, Ho-Yin</au><au>Wan, Qiping</au><au>Mok, Philip K. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Efficiency Dual-Polarity Thermoelectric Energy-Harvesting Interface Circuit With Cold Startup and Fast-Searching ZCD</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2022-06</date><risdate>2022</risdate><volume>57</volume><issue>6</issue><spage>1899</spage><epage>1912</epage><pages>1899-1912</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This article presents an auto-polarity thermoelectric energy-harvesting interface circuit based on a single-inductor boost/buck-boost hybrid converter. The power stage is configured automatically as a boost converter for a positive input voltage or a buck-boost converter for a negative input voltage. A collaborative efficiency-improving scheme of frequency selection and maximum power point tracking (MPPT) is implemented for input power ranging from 1 to 800 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>. An improved digital zero-current detection (ZCD) technique with fast searching is proposed to turn off power switches accurately. Dual-polarity cold startup is realized with the aid of a pair of cross-coupled Dickson charge pumps. This work is fabricated with a 0.13-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS process. From the measured results, the interface starts up from a 140- or −160-mV thermoelectric generator (TEG) voltage. It boosts input voltages ranging from 10 mV to 0.4 V and from −10 mV to −0.4 V to a 1.2-V output voltage. It achieves a peak end-to-end efficiency of 90% with a 0.3-V input voltage or 88% with a −0.4-V input voltage. Moreover, end-to-end efficiencies are higher than 80% for input voltages from 90 mV to 0.4 V and from −110 mV to −0.4 V.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2021.3128625</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9858-8604</orcidid><orcidid>https://orcid.org/0000-0002-1981-3680</orcidid><orcidid>https://orcid.org/0000-0002-8448-4844</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2022-06, Vol.57 (6), p.1899-1912
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_9628171
source IEEE Xplore
subjects Auto-polarity
boost
buck–boost
Capacitors
Charge pumps
Circuits
Clocks
Cold starts
cold startup
Converters
dual-polarity
Efficiency
Electric potential
Energy harvesting
frequency selection
maximum power point tracking (MPPT)
Maximum power tracking
Searching
Switches
Temperature measurement
thermoelectric generator (TEG)
Thermoelectric generators
Thermoelectricity
Transformers
Transistors
Voltage
zero-current detection (ZCD)
title A High-Efficiency Dual-Polarity Thermoelectric Energy-Harvesting Interface Circuit With Cold Startup and Fast-Searching ZCD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Efficiency%20Dual-Polarity%20Thermoelectric%20Energy-Harvesting%20Interface%20Circuit%20With%20Cold%20Startup%20and%20Fast-Searching%20ZCD&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Kuai,%20Qin&rft.date=2022-06&rft.volume=57&rft.issue=6&rft.spage=1899&rft.epage=1912&rft.pages=1899-1912&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2021.3128625&rft_dat=%3Cproquest_RIE%3E2669161015%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669161015&rft_id=info:pmid/&rft_ieee_id=9628171&rfr_iscdi=true