Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and Subject's Height

This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-01, Vol.22 (2), p.1738-1745
Hauptverfasser: Ferreira de Sousa, Felipe Augusto Sodre, Escriba, Christophe, Avina Bravo, Eli Gabriel, Brossa, Vincent, Fourniols, Jean-Yves, Rossi, Carole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1745
container_issue 2
container_start_page 1738
container_title IEEE sensors journal
container_volume 22
creator Ferreira de Sousa, Felipe Augusto Sodre
Escriba, Christophe
Avina Bravo, Eli Gabriel
Brossa, Vincent
Fourniols, Jean-Yves
Rossi, Carole
description This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average lead-time of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection.
doi_str_mv 10.1109/JSEN.2021.3131037
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9627680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9627680</ieee_id><sourcerecordid>2619023254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-e5246617b9e58de40e4888a97a0978423ea9bd153c1ade386694489b0fd1bc063</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gLgZcCEuUueVeSxrH7ZSVKhid8MkubUpSVNnUqH_3oSWru6D7xwOB6FbSnqUEvP0Oh-99RhhtMcpp4SrM9ShcawjqoQ-b3dOIsHV4hJdhbAmhBoVqw5afIPzLikAf3iIpuXWpTUeu6LAQ6ghrfNqg-f7UEOJn12ADDc3H-J-mkIBviobyGO3yfB8l6wb_iHgCeQ_q_oaXSxdEeDmOLvoazz6HEyi2fvLdNCfRSlXpI4gZkJKqhIDsc5AEBBaa2eUI0ZpwTg4k2RN-pS6DLiW0gihTUKWGU1SInkXPR58V66wW5-Xzu9t5XI76c9s-yNcxCyW_I827P2B3frqdwehtutq5zdNPMskNYRxFouGogcq9VUIHpYnW0psW7Zty7Zt2fZYdqO5O2hyADjxRjIlNeH_BtR4AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619023254</pqid></control><display><type>article</type><title>Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and Subject's Height</title><source>IEEE Electronic Library (IEL)</source><creator>Ferreira de Sousa, Felipe Augusto Sodre ; Escriba, Christophe ; Avina Bravo, Eli Gabriel ; Brossa, Vincent ; Fourniols, Jean-Yves ; Rossi, Carole</creator><creatorcontrib>Ferreira de Sousa, Felipe Augusto Sodre ; Escriba, Christophe ; Avina Bravo, Eli Gabriel ; Brossa, Vincent ; Fourniols, Jean-Yves ; Rossi, Carole</creatorcontrib><description>This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average lead-time of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3131037</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Air bags ; Algorithms ; Biomedical monitoring ; Classification algorithms ; Customizable algorithm ; Electronics ; Engineering Sciences ; Fall detection ; fall detection system ; False alarms ; Injuries ; Instrumentation and Detectors ; Lead time ; Physics ; pre-impact detection ; Senior citizens ; Sensitivity ; Signal and Image processing ; threshold-based ; wearable systems ; Wearable technology</subject><ispartof>IEEE sensors journal, 2022-01, Vol.22 (2), p.1738-1745</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-e5246617b9e58de40e4888a97a0978423ea9bd153c1ade386694489b0fd1bc063</citedby><cites>FETCH-LOGICAL-c370t-e5246617b9e58de40e4888a97a0978423ea9bd153c1ade386694489b0fd1bc063</cites><orcidid>0000-0003-2764-5776 ; 0000-0003-3864-7574 ; 0000-0002-8054-714X ; 0000-0002-5900-3973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9627680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9627680$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://laas.hal.science/hal-03452563$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira de Sousa, Felipe Augusto Sodre</creatorcontrib><creatorcontrib>Escriba, Christophe</creatorcontrib><creatorcontrib>Avina Bravo, Eli Gabriel</creatorcontrib><creatorcontrib>Brossa, Vincent</creatorcontrib><creatorcontrib>Fourniols, Jean-Yves</creatorcontrib><creatorcontrib>Rossi, Carole</creatorcontrib><title>Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and Subject's Height</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average lead-time of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection.</description><subject>Accelerometers</subject><subject>Air bags</subject><subject>Algorithms</subject><subject>Biomedical monitoring</subject><subject>Classification algorithms</subject><subject>Customizable algorithm</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Fall detection</subject><subject>fall detection system</subject><subject>False alarms</subject><subject>Injuries</subject><subject>Instrumentation and Detectors</subject><subject>Lead time</subject><subject>Physics</subject><subject>pre-impact detection</subject><subject>Senior citizens</subject><subject>Sensitivity</subject><subject>Signal and Image processing</subject><subject>threshold-based</subject><subject>wearable systems</subject><subject>Wearable technology</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFZ_gLgZcCEuUueVeSxrH7ZSVKhid8MkubUpSVNnUqH_3oSWru6D7xwOB6FbSnqUEvP0Oh-99RhhtMcpp4SrM9ShcawjqoQ-b3dOIsHV4hJdhbAmhBoVqw5afIPzLikAf3iIpuXWpTUeu6LAQ6ghrfNqg-f7UEOJn12ADDc3H-J-mkIBviobyGO3yfB8l6wb_iHgCeQ_q_oaXSxdEeDmOLvoazz6HEyi2fvLdNCfRSlXpI4gZkJKqhIDsc5AEBBaa2eUI0ZpwTg4k2RN-pS6DLiW0gihTUKWGU1SInkXPR58V66wW5-Xzu9t5XI76c9s-yNcxCyW_I827P2B3frqdwehtutq5zdNPMskNYRxFouGogcq9VUIHpYnW0psW7Zty7Zt2fZYdqO5O2hyADjxRjIlNeH_BtR4AQ</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Ferreira de Sousa, Felipe Augusto Sodre</creator><creator>Escriba, Christophe</creator><creator>Avina Bravo, Eli Gabriel</creator><creator>Brossa, Vincent</creator><creator>Fourniols, Jean-Yves</creator><creator>Rossi, Carole</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2764-5776</orcidid><orcidid>https://orcid.org/0000-0003-3864-7574</orcidid><orcidid>https://orcid.org/0000-0002-8054-714X</orcidid><orcidid>https://orcid.org/0000-0002-5900-3973</orcidid></search><sort><creationdate>20220115</creationdate><title>Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and Subject's Height</title><author>Ferreira de Sousa, Felipe Augusto Sodre ; Escriba, Christophe ; Avina Bravo, Eli Gabriel ; Brossa, Vincent ; Fourniols, Jean-Yves ; Rossi, Carole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-e5246617b9e58de40e4888a97a0978423ea9bd153c1ade386694489b0fd1bc063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Air bags</topic><topic>Algorithms</topic><topic>Biomedical monitoring</topic><topic>Classification algorithms</topic><topic>Customizable algorithm</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Fall detection</topic><topic>fall detection system</topic><topic>False alarms</topic><topic>Injuries</topic><topic>Instrumentation and Detectors</topic><topic>Lead time</topic><topic>Physics</topic><topic>pre-impact detection</topic><topic>Senior citizens</topic><topic>Sensitivity</topic><topic>Signal and Image processing</topic><topic>threshold-based</topic><topic>wearable systems</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira de Sousa, Felipe Augusto Sodre</creatorcontrib><creatorcontrib>Escriba, Christophe</creatorcontrib><creatorcontrib>Avina Bravo, Eli Gabriel</creatorcontrib><creatorcontrib>Brossa, Vincent</creatorcontrib><creatorcontrib>Fourniols, Jean-Yves</creatorcontrib><creatorcontrib>Rossi, Carole</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferreira de Sousa, Felipe Augusto Sodre</au><au>Escriba, Christophe</au><au>Avina Bravo, Eli Gabriel</au><au>Brossa, Vincent</au><au>Fourniols, Jean-Yves</au><au>Rossi, Carole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and Subject's Height</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-01-15</date><risdate>2022</risdate><volume>22</volume><issue>2</issue><spage>1738</spage><epage>1745</epage><pages>1738-1745</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average lead-time of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3131037</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2764-5776</orcidid><orcidid>https://orcid.org/0000-0003-3864-7574</orcidid><orcidid>https://orcid.org/0000-0002-8054-714X</orcidid><orcidid>https://orcid.org/0000-0002-5900-3973</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-01, Vol.22 (2), p.1738-1745
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9627680
source IEEE Electronic Library (IEL)
subjects Accelerometers
Air bags
Algorithms
Biomedical monitoring
Classification algorithms
Customizable algorithm
Electronics
Engineering Sciences
Fall detection
fall detection system
False alarms
Injuries
Instrumentation and Detectors
Lead time
Physics
pre-impact detection
Senior citizens
Sensitivity
Signal and Image processing
threshold-based
wearable systems
Wearable technology
title Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and Subject's Height
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wearable%20Pre-Impact%20Fall%20Detection%20System%20Based%20on%203D%20Accelerometer%20and%20Subject's%20Height&rft.jtitle=IEEE%20sensors%20journal&rft.au=Ferreira%20de%20Sousa,%20Felipe%20Augusto%20Sodre&rft.date=2022-01-15&rft.volume=22&rft.issue=2&rft.spage=1738&rft.epage=1745&rft.pages=1738-1745&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3131037&rft_dat=%3Cproquest_RIE%3E2619023254%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619023254&rft_id=info:pmid/&rft_ieee_id=9627680&rfr_iscdi=true