Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing
Mobile Edge Computing (MEC) is a promising technique in the 5G Era to improve the Quality of Experience (QoE) for online video streaming due to its ability to reduce the backhaul transmission by caching certain content. However, it still takes effort to address the user association and video quality...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2022-06, Vol.21 (6), p.4310-4324 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4324 |
---|---|
container_issue | 6 |
container_start_page | 4310 |
container_title | IEEE transactions on wireless communications |
container_volume | 21 |
creator | Chou, Po-Yu Chen, Wei-Yu Wang, Chih-Yu Hwang, Ren-Hung Chen, Wen-Tsuen |
description | Mobile Edge Computing (MEC) is a promising technique in the 5G Era to improve the Quality of Experience (QoE) for online video streaming due to its ability to reduce the backhaul transmission by caching certain content. However, it still takes effort to address the user association and video quality selection problem under the limited resource of MEC to fully support the low-latency demand for live video streaming. We found the optimization problem to be a non-linear integer programming, which is impossible to obtain a globally optimal solution under polynomial time. In this paper, we formulate the problem and derive the closed-form solution in the form of Lagrangian multipliers; the searching of the optimal variables is formulated as a Multi-Arm Bandit (MAB) and we propose a Deep Deterministic Policy Gradient (DDPG) based algorithm exploiting the supply-demand interpretation of the Lagrange dual problem. Simulation results show that our proposed approach achieves significant QoE improvement, especially in the low wireless resource and high user number scenario compared to other baselines. |
doi_str_mv | 10.1109/TWC.2021.3128741 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9626650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9626650</ieee_id><sourcerecordid>2675043335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-206dbc04ecb1b0a95c3ed460a168c4c46540a2740cf9d29e56dd657dab8a4f723</originalsourceid><addsrcrecordid>eNo9kF1PwyAUhhujiXN6b-INidedQIG2l3POr2zR6OYuGwqnk2WDCZ2Jv8K_LEsXryDwvM85eZPkkuABIbi8mS1GA4opGWSEFjkjR0mPcF6klLLieH_PREpoLk6TsxBWGJNccN5Lfl-9UcYu01sZQKM7gC16A2Mb5xVswLZoAtLbSKD4hCbmG9CH0eDQe-tBbvYfC9N-omdnIjwP4NEwBKeMbI2zSFodfcHtog5NpZXLzmosmrrarAGN9RLQyG22uzbKzpOTRq4DXBzOfjK_H89Gj-nk5eFpNJykipakTSkWulaYgapJjWXJVQaaCSyJKBRTTHCGJc0ZVk2paQlcaC14rmVdSNbkNOsn1513693XDkJbreKONo6sqMg5ZlmW8UjhjlLeheChqbbebKT_qQiu9rVXsfZqX3t1qD1GrrqIAYB_vBRUCI6zPxjLf6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675043335</pqid></control><display><type>article</type><title>Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Chou, Po-Yu ; Chen, Wei-Yu ; Wang, Chih-Yu ; Hwang, Ren-Hung ; Chen, Wen-Tsuen</creator><creatorcontrib>Chou, Po-Yu ; Chen, Wei-Yu ; Wang, Chih-Yu ; Hwang, Ren-Hung ; Chen, Wen-Tsuen</creatorcontrib><description>Mobile Edge Computing (MEC) is a promising technique in the 5G Era to improve the Quality of Experience (QoE) for online video streaming due to its ability to reduce the backhaul transmission by caching certain content. However, it still takes effort to address the user association and video quality selection problem under the limited resource of MEC to fully support the low-latency demand for live video streaming. We found the optimization problem to be a non-linear integer programming, which is impossible to obtain a globally optimal solution under polynomial time. In this paper, we formulate the problem and derive the closed-form solution in the form of Lagrangian multipliers; the searching of the optimal variables is formulated as a Multi-Arm Bandit (MAB) and we propose a Deep Deterministic Policy Gradient (DDPG) based algorithm exploiting the supply-demand interpretation of the Lagrange dual problem. Simulation results show that our proposed approach achieves significant QoE improvement, especially in the low wireless resource and high user number scenario compared to other baselines.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3128741</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; deep deterministic policy gradient (DDPG) ; dual pricing approach ; Edge computing ; Integer programming ; live video streaming ; Machine learning ; Mobile computing ; Mobile edge computing (MEC) ; Optimization ; Polynomials ; Pricing ; Quality of experience ; Reinforcement learning ; Resource management ; scalable video coding (SVC) ; Streaming media ; Video transmission ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2022-06, Vol.21 (6), p.4310-4324</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-206dbc04ecb1b0a95c3ed460a168c4c46540a2740cf9d29e56dd657dab8a4f723</citedby><cites>FETCH-LOGICAL-c291t-206dbc04ecb1b0a95c3ed460a168c4c46540a2740cf9d29e56dd657dab8a4f723</cites><orcidid>0000-0002-0248-8754 ; 0000-0002-7610-0791 ; 0000-0001-7996-4184 ; 0000-0002-7570-610X ; 0000-0003-2958-8437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9626650$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9626650$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chou, Po-Yu</creatorcontrib><creatorcontrib>Chen, Wei-Yu</creatorcontrib><creatorcontrib>Wang, Chih-Yu</creatorcontrib><creatorcontrib>Hwang, Ren-Hung</creatorcontrib><creatorcontrib>Chen, Wen-Tsuen</creatorcontrib><title>Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Mobile Edge Computing (MEC) is a promising technique in the 5G Era to improve the Quality of Experience (QoE) for online video streaming due to its ability to reduce the backhaul transmission by caching certain content. However, it still takes effort to address the user association and video quality selection problem under the limited resource of MEC to fully support the low-latency demand for live video streaming. We found the optimization problem to be a non-linear integer programming, which is impossible to obtain a globally optimal solution under polynomial time. In this paper, we formulate the problem and derive the closed-form solution in the form of Lagrangian multipliers; the searching of the optimal variables is formulated as a Multi-Arm Bandit (MAB) and we propose a Deep Deterministic Policy Gradient (DDPG) based algorithm exploiting the supply-demand interpretation of the Lagrange dual problem. Simulation results show that our proposed approach achieves significant QoE improvement, especially in the low wireless resource and high user number scenario compared to other baselines.</description><subject>Algorithms</subject><subject>deep deterministic policy gradient (DDPG)</subject><subject>dual pricing approach</subject><subject>Edge computing</subject><subject>Integer programming</subject><subject>live video streaming</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>Mobile edge computing (MEC)</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Pricing</subject><subject>Quality of experience</subject><subject>Reinforcement learning</subject><subject>Resource management</subject><subject>scalable video coding (SVC)</subject><subject>Streaming media</subject><subject>Video transmission</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwyAUhhujiXN6b-INidedQIG2l3POr2zR6OYuGwqnk2WDCZ2Jv8K_LEsXryDwvM85eZPkkuABIbi8mS1GA4opGWSEFjkjR0mPcF6klLLieH_PREpoLk6TsxBWGJNccN5Lfl-9UcYu01sZQKM7gC16A2Mb5xVswLZoAtLbSKD4hCbmG9CH0eDQe-tBbvYfC9N-omdnIjwP4NEwBKeMbI2zSFodfcHtog5NpZXLzmosmrrarAGN9RLQyG22uzbKzpOTRq4DXBzOfjK_H89Gj-nk5eFpNJykipakTSkWulaYgapJjWXJVQaaCSyJKBRTTHCGJc0ZVk2paQlcaC14rmVdSNbkNOsn1513693XDkJbreKONo6sqMg5ZlmW8UjhjlLeheChqbbebKT_qQiu9rVXsfZqX3t1qD1GrrqIAYB_vBRUCI6zPxjLf6g</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Chou, Po-Yu</creator><creator>Chen, Wei-Yu</creator><creator>Wang, Chih-Yu</creator><creator>Hwang, Ren-Hung</creator><creator>Chen, Wen-Tsuen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0248-8754</orcidid><orcidid>https://orcid.org/0000-0002-7610-0791</orcidid><orcidid>https://orcid.org/0000-0001-7996-4184</orcidid><orcidid>https://orcid.org/0000-0002-7570-610X</orcidid><orcidid>https://orcid.org/0000-0003-2958-8437</orcidid></search><sort><creationdate>202206</creationdate><title>Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing</title><author>Chou, Po-Yu ; Chen, Wei-Yu ; Wang, Chih-Yu ; Hwang, Ren-Hung ; Chen, Wen-Tsuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-206dbc04ecb1b0a95c3ed460a168c4c46540a2740cf9d29e56dd657dab8a4f723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>deep deterministic policy gradient (DDPG)</topic><topic>dual pricing approach</topic><topic>Edge computing</topic><topic>Integer programming</topic><topic>live video streaming</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>Mobile edge computing (MEC)</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Pricing</topic><topic>Quality of experience</topic><topic>Reinforcement learning</topic><topic>Resource management</topic><topic>scalable video coding (SVC)</topic><topic>Streaming media</topic><topic>Video transmission</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Po-Yu</creatorcontrib><creatorcontrib>Chen, Wei-Yu</creatorcontrib><creatorcontrib>Wang, Chih-Yu</creatorcontrib><creatorcontrib>Hwang, Ren-Hung</creatorcontrib><creatorcontrib>Chen, Wen-Tsuen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chou, Po-Yu</au><au>Chen, Wei-Yu</au><au>Wang, Chih-Yu</au><au>Hwang, Ren-Hung</au><au>Chen, Wen-Tsuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-06</date><risdate>2022</risdate><volume>21</volume><issue>6</issue><spage>4310</spage><epage>4324</epage><pages>4310-4324</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Mobile Edge Computing (MEC) is a promising technique in the 5G Era to improve the Quality of Experience (QoE) for online video streaming due to its ability to reduce the backhaul transmission by caching certain content. However, it still takes effort to address the user association and video quality selection problem under the limited resource of MEC to fully support the low-latency demand for live video streaming. We found the optimization problem to be a non-linear integer programming, which is impossible to obtain a globally optimal solution under polynomial time. In this paper, we formulate the problem and derive the closed-form solution in the form of Lagrangian multipliers; the searching of the optimal variables is formulated as a Multi-Arm Bandit (MAB) and we propose a Deep Deterministic Policy Gradient (DDPG) based algorithm exploiting the supply-demand interpretation of the Lagrange dual problem. Simulation results show that our proposed approach achieves significant QoE improvement, especially in the low wireless resource and high user number scenario compared to other baselines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3128741</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0248-8754</orcidid><orcidid>https://orcid.org/0000-0002-7610-0791</orcidid><orcidid>https://orcid.org/0000-0001-7996-4184</orcidid><orcidid>https://orcid.org/0000-0002-7570-610X</orcidid><orcidid>https://orcid.org/0000-0003-2958-8437</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2022-06, Vol.21 (6), p.4310-4324 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_9626650 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms deep deterministic policy gradient (DDPG) dual pricing approach Edge computing Integer programming live video streaming Machine learning Mobile computing Mobile edge computing (MEC) Optimization Polynomials Pricing Quality of experience Reinforcement learning Resource management scalable video coding (SVC) Streaming media Video transmission Wireless communication |
title | Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pricing-Based%20Deep%20Reinforcement%20Learning%20for%20Live%20Video%20Streaming%20With%20Joint%20User%20Association%20and%20Resource%20Management%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Chou,%20Po-Yu&rft.date=2022-06&rft.volume=21&rft.issue=6&rft.spage=4310&rft.epage=4324&rft.pages=4310-4324&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3128741&rft_dat=%3Cproquest_RIE%3E2675043335%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675043335&rft_id=info:pmid/&rft_ieee_id=9626650&rfr_iscdi=true |