Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing

Mobile Edge Computing (MEC) is a promising technique in the 5G Era to improve the Quality of Experience (QoE) for online video streaming due to its ability to reduce the backhaul transmission by caching certain content. However, it still takes effort to address the user association and video quality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2022-06, Vol.21 (6), p.4310-4324
Hauptverfasser: Chou, Po-Yu, Chen, Wei-Yu, Wang, Chih-Yu, Hwang, Ren-Hung, Chen, Wen-Tsuen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4324
container_issue 6
container_start_page 4310
container_title IEEE transactions on wireless communications
container_volume 21
creator Chou, Po-Yu
Chen, Wei-Yu
Wang, Chih-Yu
Hwang, Ren-Hung
Chen, Wen-Tsuen
description Mobile Edge Computing (MEC) is a promising technique in the 5G Era to improve the Quality of Experience (QoE) for online video streaming due to its ability to reduce the backhaul transmission by caching certain content. However, it still takes effort to address the user association and video quality selection problem under the limited resource of MEC to fully support the low-latency demand for live video streaming. We found the optimization problem to be a non-linear integer programming, which is impossible to obtain a globally optimal solution under polynomial time. In this paper, we formulate the problem and derive the closed-form solution in the form of Lagrangian multipliers; the searching of the optimal variables is formulated as a Multi-Arm Bandit (MAB) and we propose a Deep Deterministic Policy Gradient (DDPG) based algorithm exploiting the supply-demand interpretation of the Lagrange dual problem. Simulation results show that our proposed approach achieves significant QoE improvement, especially in the low wireless resource and high user number scenario compared to other baselines.
doi_str_mv 10.1109/TWC.2021.3128741
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9626650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9626650</ieee_id><sourcerecordid>2675043335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-206dbc04ecb1b0a95c3ed460a168c4c46540a2740cf9d29e56dd657dab8a4f723</originalsourceid><addsrcrecordid>eNo9kF1PwyAUhhujiXN6b-INidedQIG2l3POr2zR6OYuGwqnk2WDCZ2Jv8K_LEsXryDwvM85eZPkkuABIbi8mS1GA4opGWSEFjkjR0mPcF6klLLieH_PREpoLk6TsxBWGJNccN5Lfl-9UcYu01sZQKM7gC16A2Mb5xVswLZoAtLbSKD4hCbmG9CH0eDQe-tBbvYfC9N-omdnIjwP4NEwBKeMbI2zSFodfcHtog5NpZXLzmosmrrarAGN9RLQyG22uzbKzpOTRq4DXBzOfjK_H89Gj-nk5eFpNJykipakTSkWulaYgapJjWXJVQaaCSyJKBRTTHCGJc0ZVk2paQlcaC14rmVdSNbkNOsn1513693XDkJbreKONo6sqMg5ZlmW8UjhjlLeheChqbbebKT_qQiu9rVXsfZqX3t1qD1GrrqIAYB_vBRUCI6zPxjLf6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675043335</pqid></control><display><type>article</type><title>Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Chou, Po-Yu ; Chen, Wei-Yu ; Wang, Chih-Yu ; Hwang, Ren-Hung ; Chen, Wen-Tsuen</creator><creatorcontrib>Chou, Po-Yu ; Chen, Wei-Yu ; Wang, Chih-Yu ; Hwang, Ren-Hung ; Chen, Wen-Tsuen</creatorcontrib><description>Mobile Edge Computing (MEC) is a promising technique in the 5G Era to improve the Quality of Experience (QoE) for online video streaming due to its ability to reduce the backhaul transmission by caching certain content. However, it still takes effort to address the user association and video quality selection problem under the limited resource of MEC to fully support the low-latency demand for live video streaming. We found the optimization problem to be a non-linear integer programming, which is impossible to obtain a globally optimal solution under polynomial time. In this paper, we formulate the problem and derive the closed-form solution in the form of Lagrangian multipliers; the searching of the optimal variables is formulated as a Multi-Arm Bandit (MAB) and we propose a Deep Deterministic Policy Gradient (DDPG) based algorithm exploiting the supply-demand interpretation of the Lagrange dual problem. Simulation results show that our proposed approach achieves significant QoE improvement, especially in the low wireless resource and high user number scenario compared to other baselines.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3128741</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; deep deterministic policy gradient (DDPG) ; dual pricing approach ; Edge computing ; Integer programming ; live video streaming ; Machine learning ; Mobile computing ; Mobile edge computing (MEC) ; Optimization ; Polynomials ; Pricing ; Quality of experience ; Reinforcement learning ; Resource management ; scalable video coding (SVC) ; Streaming media ; Video transmission ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2022-06, Vol.21 (6), p.4310-4324</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-206dbc04ecb1b0a95c3ed460a168c4c46540a2740cf9d29e56dd657dab8a4f723</citedby><cites>FETCH-LOGICAL-c291t-206dbc04ecb1b0a95c3ed460a168c4c46540a2740cf9d29e56dd657dab8a4f723</cites><orcidid>0000-0002-0248-8754 ; 0000-0002-7610-0791 ; 0000-0001-7996-4184 ; 0000-0002-7570-610X ; 0000-0003-2958-8437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9626650$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9626650$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chou, Po-Yu</creatorcontrib><creatorcontrib>Chen, Wei-Yu</creatorcontrib><creatorcontrib>Wang, Chih-Yu</creatorcontrib><creatorcontrib>Hwang, Ren-Hung</creatorcontrib><creatorcontrib>Chen, Wen-Tsuen</creatorcontrib><title>Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Mobile Edge Computing (MEC) is a promising technique in the 5G Era to improve the Quality of Experience (QoE) for online video streaming due to its ability to reduce the backhaul transmission by caching certain content. However, it still takes effort to address the user association and video quality selection problem under the limited resource of MEC to fully support the low-latency demand for live video streaming. We found the optimization problem to be a non-linear integer programming, which is impossible to obtain a globally optimal solution under polynomial time. In this paper, we formulate the problem and derive the closed-form solution in the form of Lagrangian multipliers; the searching of the optimal variables is formulated as a Multi-Arm Bandit (MAB) and we propose a Deep Deterministic Policy Gradient (DDPG) based algorithm exploiting the supply-demand interpretation of the Lagrange dual problem. Simulation results show that our proposed approach achieves significant QoE improvement, especially in the low wireless resource and high user number scenario compared to other baselines.</description><subject>Algorithms</subject><subject>deep deterministic policy gradient (DDPG)</subject><subject>dual pricing approach</subject><subject>Edge computing</subject><subject>Integer programming</subject><subject>live video streaming</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>Mobile edge computing (MEC)</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Pricing</subject><subject>Quality of experience</subject><subject>Reinforcement learning</subject><subject>Resource management</subject><subject>scalable video coding (SVC)</subject><subject>Streaming media</subject><subject>Video transmission</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwyAUhhujiXN6b-INidedQIG2l3POr2zR6OYuGwqnk2WDCZ2Jv8K_LEsXryDwvM85eZPkkuABIbi8mS1GA4opGWSEFjkjR0mPcF6klLLieH_PREpoLk6TsxBWGJNccN5Lfl-9UcYu01sZQKM7gC16A2Mb5xVswLZoAtLbSKD4hCbmG9CH0eDQe-tBbvYfC9N-omdnIjwP4NEwBKeMbI2zSFodfcHtog5NpZXLzmosmrrarAGN9RLQyG22uzbKzpOTRq4DXBzOfjK_H89Gj-nk5eFpNJykipakTSkWulaYgapJjWXJVQaaCSyJKBRTTHCGJc0ZVk2paQlcaC14rmVdSNbkNOsn1513693XDkJbreKONo6sqMg5ZlmW8UjhjlLeheChqbbebKT_qQiu9rVXsfZqX3t1qD1GrrqIAYB_vBRUCI6zPxjLf6g</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Chou, Po-Yu</creator><creator>Chen, Wei-Yu</creator><creator>Wang, Chih-Yu</creator><creator>Hwang, Ren-Hung</creator><creator>Chen, Wen-Tsuen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0248-8754</orcidid><orcidid>https://orcid.org/0000-0002-7610-0791</orcidid><orcidid>https://orcid.org/0000-0001-7996-4184</orcidid><orcidid>https://orcid.org/0000-0002-7570-610X</orcidid><orcidid>https://orcid.org/0000-0003-2958-8437</orcidid></search><sort><creationdate>202206</creationdate><title>Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing</title><author>Chou, Po-Yu ; Chen, Wei-Yu ; Wang, Chih-Yu ; Hwang, Ren-Hung ; Chen, Wen-Tsuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-206dbc04ecb1b0a95c3ed460a168c4c46540a2740cf9d29e56dd657dab8a4f723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>deep deterministic policy gradient (DDPG)</topic><topic>dual pricing approach</topic><topic>Edge computing</topic><topic>Integer programming</topic><topic>live video streaming</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>Mobile edge computing (MEC)</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Pricing</topic><topic>Quality of experience</topic><topic>Reinforcement learning</topic><topic>Resource management</topic><topic>scalable video coding (SVC)</topic><topic>Streaming media</topic><topic>Video transmission</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Po-Yu</creatorcontrib><creatorcontrib>Chen, Wei-Yu</creatorcontrib><creatorcontrib>Wang, Chih-Yu</creatorcontrib><creatorcontrib>Hwang, Ren-Hung</creatorcontrib><creatorcontrib>Chen, Wen-Tsuen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chou, Po-Yu</au><au>Chen, Wei-Yu</au><au>Wang, Chih-Yu</au><au>Hwang, Ren-Hung</au><au>Chen, Wen-Tsuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-06</date><risdate>2022</risdate><volume>21</volume><issue>6</issue><spage>4310</spage><epage>4324</epage><pages>4310-4324</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Mobile Edge Computing (MEC) is a promising technique in the 5G Era to improve the Quality of Experience (QoE) for online video streaming due to its ability to reduce the backhaul transmission by caching certain content. However, it still takes effort to address the user association and video quality selection problem under the limited resource of MEC to fully support the low-latency demand for live video streaming. We found the optimization problem to be a non-linear integer programming, which is impossible to obtain a globally optimal solution under polynomial time. In this paper, we formulate the problem and derive the closed-form solution in the form of Lagrangian multipliers; the searching of the optimal variables is formulated as a Multi-Arm Bandit (MAB) and we propose a Deep Deterministic Policy Gradient (DDPG) based algorithm exploiting the supply-demand interpretation of the Lagrange dual problem. Simulation results show that our proposed approach achieves significant QoE improvement, especially in the low wireless resource and high user number scenario compared to other baselines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3128741</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0248-8754</orcidid><orcidid>https://orcid.org/0000-0002-7610-0791</orcidid><orcidid>https://orcid.org/0000-0001-7996-4184</orcidid><orcidid>https://orcid.org/0000-0002-7570-610X</orcidid><orcidid>https://orcid.org/0000-0003-2958-8437</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2022-06, Vol.21 (6), p.4310-4324
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_9626650
source IEEE Electronic Library (IEL)
subjects Algorithms
deep deterministic policy gradient (DDPG)
dual pricing approach
Edge computing
Integer programming
live video streaming
Machine learning
Mobile computing
Mobile edge computing (MEC)
Optimization
Polynomials
Pricing
Quality of experience
Reinforcement learning
Resource management
scalable video coding (SVC)
Streaming media
Video transmission
Wireless communication
title Pricing-Based Deep Reinforcement Learning for Live Video Streaming With Joint User Association and Resource Management in Mobile Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pricing-Based%20Deep%20Reinforcement%20Learning%20for%20Live%20Video%20Streaming%20With%20Joint%20User%20Association%20and%20Resource%20Management%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Chou,%20Po-Yu&rft.date=2022-06&rft.volume=21&rft.issue=6&rft.spage=4310&rft.epage=4324&rft.pages=4310-4324&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3128741&rft_dat=%3Cproquest_RIE%3E2675043335%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675043335&rft_id=info:pmid/&rft_ieee_id=9626650&rfr_iscdi=true