A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications

Generative adversarial networks (GANs) have recently become a hot research topic; however, they have been studied since 2014, and a large number of algorithms have been proposed. Nevertheless, few comprehensive studies explain the connections among different GAN variants and how they have evolved. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-04, Vol.35 (4), p.3313-3332
Hauptverfasser: Gui, Jie, Sun, Zhenan, Wen, Yonggang, Tao, Dacheng, Ye, Jieping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3332
container_issue 4
container_start_page 3313
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Gui, Jie
Sun, Zhenan
Wen, Yonggang
Tao, Dacheng
Ye, Jieping
description Generative adversarial networks (GANs) have recently become a hot research topic; however, they have been studied since 2014, and a large number of algorithms have been proposed. Nevertheless, few comprehensive studies explain the connections among different GAN variants and how they have evolved. In this paper, we attempt to provide a review of the various GAN methods from the perspectives of algorithms, theory, and applications. First, the motivations, mathematical representations, and structures of most GAN algorithms are introduced in detail, and we compare their commonalities and differences. Second, theoretical issues related to GANs are investigated. Finally, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, the medical field, and data science are discussed.
doi_str_mv 10.1109/TKDE.2021.3130191
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9625798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9625798</ieee_id><sourcerecordid>2784550391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2924-7437d73656bfc3b790b4c63764f35eceeea428582dc62a551574c0ef168486f43</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9AcbLJl4t7vduvTWIaCQaDZ6bZTuVInTrboHw7y2BeJr38D4zkweha0oGlJL0fvr6OBowwuiAU05oSk9Qj0ppEtbl0y4TQRPBhT5HFzEuCCFGG9pDHxn-hE0FW-xrPIYagm2rDeCs2ECINlR2id-g3frwEx9wtvz2oWrnq3iHp3PwYXeHbV3grGmWletIX8dLdFbaZYSr4-yjr6fRdPicTN7HL8NskjiWMpFowXWhuZJqVjo-0ymZCae4VqLkEhwAWMGMNKxwilkpqdTCESipMsKoUvA-uj3sbYL_XUNs84Vfh7o7mTNthJSEp7Rr0UPLBR9jgDJvQrWyYZdTku_N5Xtz-d5cfjTXMTcHpuq--O-nikmdGv4HfJZofQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784550391</pqid></control><display><type>article</type><title>A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Gui, Jie ; Sun, Zhenan ; Wen, Yonggang ; Tao, Dacheng ; Ye, Jieping</creator><creatorcontrib>Gui, Jie ; Sun, Zhenan ; Wen, Yonggang ; Tao, Dacheng ; Ye, Jieping</creatorcontrib><description>Generative adversarial networks (GANs) have recently become a hot research topic; however, they have been studied since 2014, and a large number of algorithms have been proposed. Nevertheless, few comprehensive studies explain the connections among different GAN variants and how they have evolved. In this paper, we attempt to provide a review of the various GAN methods from the perspectives of algorithms, theory, and applications. First, the motivations, mathematical representations, and structures of most GAN algorithms are introduced in detail, and we compare their commonalities and differences. Second, theoretical issues related to GANs are investigated. Finally, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, the medical field, and data science are discussed.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2021.3130191</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>algorithm ; Algorithms ; applications ; Audio data ; Computer vision ; Data models ; Deep learning ; Generative adversarial networks ; Generators ; Image processing ; Inference algorithms ; Linear programming ; Machine learning algorithms ; Natural language processing ; theory</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-04, Vol.35 (4), p.3313-3332</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2924-7437d73656bfc3b790b4c63764f35eceeea428582dc62a551574c0ef168486f43</citedby><cites>FETCH-LOGICAL-c2924-7437d73656bfc3b790b4c63764f35eceeea428582dc62a551574c0ef168486f43</cites><orcidid>0000-0003-4029-9935 ; 0000-0001-7225-5449 ; 0000-0002-9450-1759 ; 0000-0002-2751-5114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9625798$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9625798$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gui, Jie</creatorcontrib><creatorcontrib>Sun, Zhenan</creatorcontrib><creatorcontrib>Wen, Yonggang</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><creatorcontrib>Ye, Jieping</creatorcontrib><title>A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Generative adversarial networks (GANs) have recently become a hot research topic; however, they have been studied since 2014, and a large number of algorithms have been proposed. Nevertheless, few comprehensive studies explain the connections among different GAN variants and how they have evolved. In this paper, we attempt to provide a review of the various GAN methods from the perspectives of algorithms, theory, and applications. First, the motivations, mathematical representations, and structures of most GAN algorithms are introduced in detail, and we compare their commonalities and differences. Second, theoretical issues related to GANs are investigated. Finally, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, the medical field, and data science are discussed.</description><subject>algorithm</subject><subject>Algorithms</subject><subject>applications</subject><subject>Audio data</subject><subject>Computer vision</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image processing</subject><subject>Inference algorithms</subject><subject>Linear programming</subject><subject>Machine learning algorithms</subject><subject>Natural language processing</subject><subject>theory</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9AcbLJl4t7vduvTWIaCQaDZ6bZTuVInTrboHw7y2BeJr38D4zkweha0oGlJL0fvr6OBowwuiAU05oSk9Qj0ppEtbl0y4TQRPBhT5HFzEuCCFGG9pDHxn-hE0FW-xrPIYagm2rDeCs2ECINlR2id-g3frwEx9wtvz2oWrnq3iHp3PwYXeHbV3grGmWletIX8dLdFbaZYSr4-yjr6fRdPicTN7HL8NskjiWMpFowXWhuZJqVjo-0ymZCae4VqLkEhwAWMGMNKxwilkpqdTCESipMsKoUvA-uj3sbYL_XUNs84Vfh7o7mTNthJSEp7Rr0UPLBR9jgDJvQrWyYZdTku_N5Xtz-d5cfjTXMTcHpuq--O-nikmdGv4HfJZofQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Gui, Jie</creator><creator>Sun, Zhenan</creator><creator>Wen, Yonggang</creator><creator>Tao, Dacheng</creator><creator>Ye, Jieping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4029-9935</orcidid><orcidid>https://orcid.org/0000-0001-7225-5449</orcidid><orcidid>https://orcid.org/0000-0002-9450-1759</orcidid><orcidid>https://orcid.org/0000-0002-2751-5114</orcidid></search><sort><creationdate>20230401</creationdate><title>A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications</title><author>Gui, Jie ; Sun, Zhenan ; Wen, Yonggang ; Tao, Dacheng ; Ye, Jieping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2924-7437d73656bfc3b790b4c63764f35eceeea428582dc62a551574c0ef168486f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>algorithm</topic><topic>Algorithms</topic><topic>applications</topic><topic>Audio data</topic><topic>Computer vision</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image processing</topic><topic>Inference algorithms</topic><topic>Linear programming</topic><topic>Machine learning algorithms</topic><topic>Natural language processing</topic><topic>theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gui, Jie</creatorcontrib><creatorcontrib>Sun, Zhenan</creatorcontrib><creatorcontrib>Wen, Yonggang</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><creatorcontrib>Ye, Jieping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gui, Jie</au><au>Sun, Zhenan</au><au>Wen, Yonggang</au><au>Tao, Dacheng</au><au>Ye, Jieping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>35</volume><issue>4</issue><spage>3313</spage><epage>3332</epage><pages>3313-3332</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Generative adversarial networks (GANs) have recently become a hot research topic; however, they have been studied since 2014, and a large number of algorithms have been proposed. Nevertheless, few comprehensive studies explain the connections among different GAN variants and how they have evolved. In this paper, we attempt to provide a review of the various GAN methods from the perspectives of algorithms, theory, and applications. First, the motivations, mathematical representations, and structures of most GAN algorithms are introduced in detail, and we compare their commonalities and differences. Second, theoretical issues related to GANs are investigated. Finally, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, the medical field, and data science are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2021.3130191</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4029-9935</orcidid><orcidid>https://orcid.org/0000-0001-7225-5449</orcidid><orcidid>https://orcid.org/0000-0002-9450-1759</orcidid><orcidid>https://orcid.org/0000-0002-2751-5114</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-04, Vol.35 (4), p.3313-3332
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_9625798
source IEEE Electronic Library (IEL)
subjects algorithm
Algorithms
applications
Audio data
Computer vision
Data models
Deep learning
Generative adversarial networks
Generators
Image processing
Inference algorithms
Linear programming
Machine learning algorithms
Natural language processing
theory
title A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20on%20Generative%20Adversarial%20Networks:%20Algorithms,%20Theory,%20and%20Applications&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Gui,%20Jie&rft.date=2023-04-01&rft.volume=35&rft.issue=4&rft.spage=3313&rft.epage=3332&rft.pages=3313-3332&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2021.3130191&rft_dat=%3Cproquest_RIE%3E2784550391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784550391&rft_id=info:pmid/&rft_ieee_id=9625798&rfr_iscdi=true