Evolution of the Graphics Processing Unit (GPU)
Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling photorealistic images at real-time frame rates. GPUs...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2021-11, Vol.41 (6), p.42-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 6 |
container_start_page | 42 |
container_title | IEEE MICRO |
container_volume | 41 |
creator | Dally, William J. Keckler, Stephen W. Kirk, David B. |
description | Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling photorealistic images at real-time frame rates. GPUs have evolved by adding features to support new use cases. NVIDIA’s GeForce 256, the first GPU, was a dedicated processor for real-time graphics, an application that demands large amounts of floating-point arithmetic for vertex and fragment shading computations and high memory bandwidth. As real-time graphics advanced, GPUs became programmable. The combination of programmability and floating-point performance made GPUs attractive for running scientific applications. Scientists found ways to use early programmable GPUs by casting their calculations as vertex and fragment shaders. GPUs evolved to meet the needs of scientific users by adding hardware for simpler programming, double-precision floating-point arithmetic, and resilience. |
doi_str_mv | 10.1109/MM.2021.3113475 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9623445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9623445</ieee_id><sourcerecordid>2601645278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-17a22233876119c4dc0ec125d3591a43ed5433e96862e54f283d2779b257e22c3</originalsourceid><addsrcrecordid>eNqNkEFLwzAUgIMoOKdnD14KXhTplrwkTXOUMqew4g7uHLo0dRmzmUmr-O_NqOjV03uH73sPPoQuCZ4QguW0LCeAgUwoIZQJfoRGRFKRMsLoMRphEJASQeEUnYWwxRhzwPkITWcfbtd31rWJa5JuY5K5r_Ybq0Oy9E6bEGz7mqxa2yU38-Xq9hydNNUumIufOUarh9lL8ZgunudPxf0i1ZDLLn6qAIDSXGSESM1qjY0mwGvKJakYNTVnlBqZ5RkYzhrIaQ1CyDVwYQA0HaPr4e7eu_fehE5tXe_b-FJBhknGOIg8UtOB0t6F4E2j9t6-Vf5LEawOVVRZqkMV9VMlGvlgfJq1a4K2ptXm14pZBACOQtywLGxXHdIUrm-7qN79X4301UBbY_4omQFljNNvW5h6Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601645278</pqid></control><display><type>article</type><title>Evolution of the Graphics Processing Unit (GPU)</title><source>IEEE Electronic Library (IEL)</source><creator>Dally, William J. ; Keckler, Stephen W. ; Kirk, David B.</creator><creatorcontrib>Dally, William J. ; Keckler, Stephen W. ; Kirk, David B.</creatorcontrib><description>Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling photorealistic images at real-time frame rates. GPUs have evolved by adding features to support new use cases. NVIDIA’s GeForce 256, the first GPU, was a dedicated processor for real-time graphics, an application that demands large amounts of floating-point arithmetic for vertex and fragment shading computations and high memory bandwidth. As real-time graphics advanced, GPUs became programmable. The combination of programmability and floating-point performance made GPUs attractive for running scientific applications. Scientists found ways to use early programmable GPUs by casting their calculations as vertex and fragment shaders. GPUs evolved to meet the needs of scientific users by adding hardware for simpler programming, double-precision floating-point arithmetic, and resilience.</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2021.3113475</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>LOS ALAMITOS: IEEE</publisher><subject>Autonomous cars ; Computer Science ; Computer Science, Hardware & Architecture ; Computer Science, Software Engineering ; Evolution ; Floating point arithmetic ; Graphics processing units ; Microprocessors ; Real time ; Science & Technology ; Shaders ; Supercomputers ; Technology</subject><ispartof>IEEE MICRO, 2021-11, Vol.41 (6), p.42-51</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>29</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000722002100009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c289t-17a22233876119c4dc0ec125d3591a43ed5433e96862e54f283d2779b257e22c3</citedby><cites>FETCH-LOGICAL-c289t-17a22233876119c4dc0ec125d3591a43ed5433e96862e54f283d2779b257e22c3</cites><orcidid>0000-0002-4887-5098 ; 0000-0003-4632-2876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9623445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,39267,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9623445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dally, William J.</creatorcontrib><creatorcontrib>Keckler, Stephen W.</creatorcontrib><creatorcontrib>Kirk, David B.</creatorcontrib><title>Evolution of the Graphics Processing Unit (GPU)</title><title>IEEE MICRO</title><addtitle>MM</addtitle><addtitle>IEEE MICRO</addtitle><description>Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling photorealistic images at real-time frame rates. GPUs have evolved by adding features to support new use cases. NVIDIA’s GeForce 256, the first GPU, was a dedicated processor for real-time graphics, an application that demands large amounts of floating-point arithmetic for vertex and fragment shading computations and high memory bandwidth. As real-time graphics advanced, GPUs became programmable. The combination of programmability and floating-point performance made GPUs attractive for running scientific applications. Scientists found ways to use early programmable GPUs by casting their calculations as vertex and fragment shaders. GPUs evolved to meet the needs of scientific users by adding hardware for simpler programming, double-precision floating-point arithmetic, and resilience.</description><subject>Autonomous cars</subject><subject>Computer Science</subject><subject>Computer Science, Hardware & Architecture</subject><subject>Computer Science, Software Engineering</subject><subject>Evolution</subject><subject>Floating point arithmetic</subject><subject>Graphics processing units</subject><subject>Microprocessors</subject><subject>Real time</subject><subject>Science & Technology</subject><subject>Shaders</subject><subject>Supercomputers</subject><subject>Technology</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkEFLwzAUgIMoOKdnD14KXhTplrwkTXOUMqew4g7uHLo0dRmzmUmr-O_NqOjV03uH73sPPoQuCZ4QguW0LCeAgUwoIZQJfoRGRFKRMsLoMRphEJASQeEUnYWwxRhzwPkITWcfbtd31rWJa5JuY5K5r_Ybq0Oy9E6bEGz7mqxa2yU38-Xq9hydNNUumIufOUarh9lL8ZgunudPxf0i1ZDLLn6qAIDSXGSESM1qjY0mwGvKJakYNTVnlBqZ5RkYzhrIaQ1CyDVwYQA0HaPr4e7eu_fehE5tXe_b-FJBhknGOIg8UtOB0t6F4E2j9t6-Vf5LEawOVVRZqkMV9VMlGvlgfJq1a4K2ptXm14pZBACOQtywLGxXHdIUrm-7qN79X4301UBbY_4omQFljNNvW5h6Gg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Dally, William J.</creator><creator>Keckler, Stephen W.</creator><creator>Kirk, David B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4887-5098</orcidid><orcidid>https://orcid.org/0000-0003-4632-2876</orcidid></search><sort><creationdate>20211101</creationdate><title>Evolution of the Graphics Processing Unit (GPU)</title><author>Dally, William J. ; Keckler, Stephen W. ; Kirk, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-17a22233876119c4dc0ec125d3591a43ed5433e96862e54f283d2779b257e22c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autonomous cars</topic><topic>Computer Science</topic><topic>Computer Science, Hardware & Architecture</topic><topic>Computer Science, Software Engineering</topic><topic>Evolution</topic><topic>Floating point arithmetic</topic><topic>Graphics processing units</topic><topic>Microprocessors</topic><topic>Real time</topic><topic>Science & Technology</topic><topic>Shaders</topic><topic>Supercomputers</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dally, William J.</creatorcontrib><creatorcontrib>Keckler, Stephen W.</creatorcontrib><creatorcontrib>Kirk, David B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dally, William J.</au><au>Keckler, Stephen W.</au><au>Kirk, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Graphics Processing Unit (GPU)</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><stitle>IEEE MICRO</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>41</volume><issue>6</issue><spage>42</spage><epage>51</epage><pages>42-51</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling photorealistic images at real-time frame rates. GPUs have evolved by adding features to support new use cases. NVIDIA’s GeForce 256, the first GPU, was a dedicated processor for real-time graphics, an application that demands large amounts of floating-point arithmetic for vertex and fragment shading computations and high memory bandwidth. As real-time graphics advanced, GPUs became programmable. The combination of programmability and floating-point performance made GPUs attractive for running scientific applications. Scientists found ways to use early programmable GPUs by casting their calculations as vertex and fragment shaders. GPUs evolved to meet the needs of scientific users by adding hardware for simpler programming, double-precision floating-point arithmetic, and resilience.</abstract><cop>LOS ALAMITOS</cop><pub>IEEE</pub><doi>10.1109/MM.2021.3113475</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4887-5098</orcidid><orcidid>https://orcid.org/0000-0003-4632-2876</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0272-1732 |
ispartof | IEEE MICRO, 2021-11, Vol.41 (6), p.42-51 |
issn | 0272-1732 1937-4143 |
language | eng |
recordid | cdi_ieee_primary_9623445 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomous cars Computer Science Computer Science, Hardware & Architecture Computer Science, Software Engineering Evolution Floating point arithmetic Graphics processing units Microprocessors Real time Science & Technology Shaders Supercomputers Technology |
title | Evolution of the Graphics Processing Unit (GPU) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Graphics%20Processing%20Unit%20(GPU)&rft.jtitle=IEEE%20MICRO&rft.au=Dally,%20William%20J.&rft.date=2021-11-01&rft.volume=41&rft.issue=6&rft.spage=42&rft.epage=51&rft.pages=42-51&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2021.3113475&rft_dat=%3Cproquest_RIE%3E2601645278%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601645278&rft_id=info:pmid/&rft_ieee_id=9623445&rfr_iscdi=true |