Evolution of the Graphics Processing Unit (GPU)

Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling photorealistic images at real-time frame rates. GPUs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE MICRO 2021-11, Vol.41 (6), p.42-51
Hauptverfasser: Dally, William J., Keckler, Stephen W., Kirk, David B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 6
container_start_page 42
container_title IEEE MICRO
container_volume 41
creator Dally, William J.
Keckler, Stephen W.
Kirk, David B.
description Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling photorealistic images at real-time frame rates. GPUs have evolved by adding features to support new use cases. NVIDIA’s GeForce 256, the first GPU, was a dedicated processor for real-time graphics, an application that demands large amounts of floating-point arithmetic for vertex and fragment shading computations and high memory bandwidth. As real-time graphics advanced, GPUs became programmable. The combination of programmability and floating-point performance made GPUs attractive for running scientific applications. Scientists found ways to use early programmable GPUs by casting their calculations as vertex and fragment shaders. GPUs evolved to meet the needs of scientific users by adding hardware for simpler programming, double-precision floating-point arithmetic, and resilience.
doi_str_mv 10.1109/MM.2021.3113475
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9623445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9623445</ieee_id><sourcerecordid>2601645278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-17a22233876119c4dc0ec125d3591a43ed5433e96862e54f283d2779b257e22c3</originalsourceid><addsrcrecordid>eNqNkEFLwzAUgIMoOKdnD14KXhTplrwkTXOUMqew4g7uHLo0dRmzmUmr-O_NqOjV03uH73sPPoQuCZ4QguW0LCeAgUwoIZQJfoRGRFKRMsLoMRphEJASQeEUnYWwxRhzwPkITWcfbtd31rWJa5JuY5K5r_Ybq0Oy9E6bEGz7mqxa2yU38-Xq9hydNNUumIufOUarh9lL8ZgunudPxf0i1ZDLLn6qAIDSXGSESM1qjY0mwGvKJakYNTVnlBqZ5RkYzhrIaQ1CyDVwYQA0HaPr4e7eu_fehE5tXe_b-FJBhknGOIg8UtOB0t6F4E2j9t6-Vf5LEawOVVRZqkMV9VMlGvlgfJq1a4K2ptXm14pZBACOQtywLGxXHdIUrm-7qN79X4301UBbY_4omQFljNNvW5h6Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601645278</pqid></control><display><type>article</type><title>Evolution of the Graphics Processing Unit (GPU)</title><source>IEEE Electronic Library (IEL)</source><creator>Dally, William J. ; Keckler, Stephen W. ; Kirk, David B.</creator><creatorcontrib>Dally, William J. ; Keckler, Stephen W. ; Kirk, David B.</creatorcontrib><description>Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling photorealistic images at real-time frame rates. GPUs have evolved by adding features to support new use cases. NVIDIA’s GeForce 256, the first GPU, was a dedicated processor for real-time graphics, an application that demands large amounts of floating-point arithmetic for vertex and fragment shading computations and high memory bandwidth. As real-time graphics advanced, GPUs became programmable. The combination of programmability and floating-point performance made GPUs attractive for running scientific applications. Scientists found ways to use early programmable GPUs by casting their calculations as vertex and fragment shaders. GPUs evolved to meet the needs of scientific users by adding hardware for simpler programming, double-precision floating-point arithmetic, and resilience.</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2021.3113475</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>LOS ALAMITOS: IEEE</publisher><subject>Autonomous cars ; Computer Science ; Computer Science, Hardware &amp; Architecture ; Computer Science, Software Engineering ; Evolution ; Floating point arithmetic ; Graphics processing units ; Microprocessors ; Real time ; Science &amp; Technology ; Shaders ; Supercomputers ; Technology</subject><ispartof>IEEE MICRO, 2021-11, Vol.41 (6), p.42-51</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>29</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000722002100009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c289t-17a22233876119c4dc0ec125d3591a43ed5433e96862e54f283d2779b257e22c3</citedby><cites>FETCH-LOGICAL-c289t-17a22233876119c4dc0ec125d3591a43ed5433e96862e54f283d2779b257e22c3</cites><orcidid>0000-0002-4887-5098 ; 0000-0003-4632-2876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9623445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,39267,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9623445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dally, William J.</creatorcontrib><creatorcontrib>Keckler, Stephen W.</creatorcontrib><creatorcontrib>Kirk, David B.</creatorcontrib><title>Evolution of the Graphics Processing Unit (GPU)</title><title>IEEE MICRO</title><addtitle>MM</addtitle><addtitle>IEEE MICRO</addtitle><description>Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling photorealistic images at real-time frame rates. GPUs have evolved by adding features to support new use cases. NVIDIA’s GeForce 256, the first GPU, was a dedicated processor for real-time graphics, an application that demands large amounts of floating-point arithmetic for vertex and fragment shading computations and high memory bandwidth. As real-time graphics advanced, GPUs became programmable. The combination of programmability and floating-point performance made GPUs attractive for running scientific applications. Scientists found ways to use early programmable GPUs by casting their calculations as vertex and fragment shaders. GPUs evolved to meet the needs of scientific users by adding hardware for simpler programming, double-precision floating-point arithmetic, and resilience.</description><subject>Autonomous cars</subject><subject>Computer Science</subject><subject>Computer Science, Hardware &amp; Architecture</subject><subject>Computer Science, Software Engineering</subject><subject>Evolution</subject><subject>Floating point arithmetic</subject><subject>Graphics processing units</subject><subject>Microprocessors</subject><subject>Real time</subject><subject>Science &amp; Technology</subject><subject>Shaders</subject><subject>Supercomputers</subject><subject>Technology</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkEFLwzAUgIMoOKdnD14KXhTplrwkTXOUMqew4g7uHLo0dRmzmUmr-O_NqOjV03uH73sPPoQuCZ4QguW0LCeAgUwoIZQJfoRGRFKRMsLoMRphEJASQeEUnYWwxRhzwPkITWcfbtd31rWJa5JuY5K5r_Ybq0Oy9E6bEGz7mqxa2yU38-Xq9hydNNUumIufOUarh9lL8ZgunudPxf0i1ZDLLn6qAIDSXGSESM1qjY0mwGvKJakYNTVnlBqZ5RkYzhrIaQ1CyDVwYQA0HaPr4e7eu_fehE5tXe_b-FJBhknGOIg8UtOB0t6F4E2j9t6-Vf5LEawOVVRZqkMV9VMlGvlgfJq1a4K2ptXm14pZBACOQtywLGxXHdIUrm-7qN79X4301UBbY_4omQFljNNvW5h6Gg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Dally, William J.</creator><creator>Keckler, Stephen W.</creator><creator>Kirk, David B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4887-5098</orcidid><orcidid>https://orcid.org/0000-0003-4632-2876</orcidid></search><sort><creationdate>20211101</creationdate><title>Evolution of the Graphics Processing Unit (GPU)</title><author>Dally, William J. ; Keckler, Stephen W. ; Kirk, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-17a22233876119c4dc0ec125d3591a43ed5433e96862e54f283d2779b257e22c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autonomous cars</topic><topic>Computer Science</topic><topic>Computer Science, Hardware &amp; Architecture</topic><topic>Computer Science, Software Engineering</topic><topic>Evolution</topic><topic>Floating point arithmetic</topic><topic>Graphics processing units</topic><topic>Microprocessors</topic><topic>Real time</topic><topic>Science &amp; Technology</topic><topic>Shaders</topic><topic>Supercomputers</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dally, William J.</creatorcontrib><creatorcontrib>Keckler, Stephen W.</creatorcontrib><creatorcontrib>Kirk, David B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dally, William J.</au><au>Keckler, Stephen W.</au><au>Kirk, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Graphics Processing Unit (GPU)</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><stitle>IEEE MICRO</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>41</volume><issue>6</issue><spage>42</spage><epage>51</epage><pages>42-51</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling photorealistic images at real-time frame rates. GPUs have evolved by adding features to support new use cases. NVIDIA’s GeForce 256, the first GPU, was a dedicated processor for real-time graphics, an application that demands large amounts of floating-point arithmetic for vertex and fragment shading computations and high memory bandwidth. As real-time graphics advanced, GPUs became programmable. The combination of programmability and floating-point performance made GPUs attractive for running scientific applications. Scientists found ways to use early programmable GPUs by casting their calculations as vertex and fragment shaders. GPUs evolved to meet the needs of scientific users by adding hardware for simpler programming, double-precision floating-point arithmetic, and resilience.</abstract><cop>LOS ALAMITOS</cop><pub>IEEE</pub><doi>10.1109/MM.2021.3113475</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4887-5098</orcidid><orcidid>https://orcid.org/0000-0003-4632-2876</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0272-1732
ispartof IEEE MICRO, 2021-11, Vol.41 (6), p.42-51
issn 0272-1732
1937-4143
language eng
recordid cdi_ieee_primary_9623445
source IEEE Electronic Library (IEL)
subjects Autonomous cars
Computer Science
Computer Science, Hardware & Architecture
Computer Science, Software Engineering
Evolution
Floating point arithmetic
Graphics processing units
Microprocessors
Real time
Science & Technology
Shaders
Supercomputers
Technology
title Evolution of the Graphics Processing Unit (GPU)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Graphics%20Processing%20Unit%20(GPU)&rft.jtitle=IEEE%20MICRO&rft.au=Dally,%20William%20J.&rft.date=2021-11-01&rft.volume=41&rft.issue=6&rft.spage=42&rft.epage=51&rft.pages=42-51&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2021.3113475&rft_dat=%3Cproquest_RIE%3E2601645278%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601645278&rft_id=info:pmid/&rft_ieee_id=9623445&rfr_iscdi=true