Dynamic Multichannel Access via Multi-Agent Reinforcement Learning: Throughput and Fairness Guarantees

We consider a multichannel random access system in which each user accesses a single channel at each time slot to communicate with an access point (AP). Users arrive to the system at random and be activated for a certain period of time slots and then disappear from the system. Under such dynamic net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2022-06, Vol.21 (6), p.3994-4008
Hauptverfasser: Sohaib, Muhammad, Jeong, Jongjin, Jeon, Sang-Woon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4008
container_issue 6
container_start_page 3994
container_title IEEE transactions on wireless communications
container_volume 21
creator Sohaib, Muhammad
Jeong, Jongjin
Jeon, Sang-Woon
description We consider a multichannel random access system in which each user accesses a single channel at each time slot to communicate with an access point (AP). Users arrive to the system at random and be activated for a certain period of time slots and then disappear from the system. Under such dynamic network environment, we propose a distributed multichannel access protocol based on multi-agent reinforcement learning (RL) to improve both throughput and fairness between active users. Unlike the previous approaches adjusting channel access probabilities at each time slot, the proposed RL algorithm deterministically selects a set of channel access policies for several consecutive time slots. To effectively reduce the complexity of the proposed RL algorithm, we adopt a branching dueling Q-network architecture and propose an efficient training methodology for producing proper Q-values over time-varying user sets. We perform extensive simulations on realistic traffic environments and demonstrate that the proposed online learning improves both throughput and fairness compared to the conventional RL approaches and centralized scheduling policies.
doi_str_mv 10.1109/TWC.2021.3126112
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9619960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9619960</ieee_id><sourcerecordid>2675043187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c5348ba80955fd002b5c860057dd8be79e34d698c5334e408fa38bfc031ff0403</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4soOKd3wUvBc-dL0qSJtzHdFCaCTDyWNH3ZMrZ0Jq2w_96Wiaf3g8_3PfgkyS2BCSGgHlZfswkFSiaMUEEIPUtGhHOZUZrL86FnIiO0EJfJVYxbAFIIzkeJfTp6vXcmfet2rTMb7T3u0qkxGGP64_Rpn03X6Nv0A523TTC4H6Yl6uCdXz-mq01ouvXm0LWp9nU61y74Ib_odNC-RYzXyYXVu4g3f3WcfM6fV7OXbPm-eJ1Nl5mhirSZ4SyXlZagOLc1AK24kQKAF3UtKywUsrwWSvYcyzEHaTWTlTXAiLWQAxsn96e7h9B8dxjbctt0wfcvSyoKDjkjsugpOFEmNDEGtOUhuL0Ox5JAOdgse5vlYLP8s9lH7k4Rh4j_uBJEKQHsFzp8cME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675043187</pqid></control><display><type>article</type><title>Dynamic Multichannel Access via Multi-Agent Reinforcement Learning: Throughput and Fairness Guarantees</title><source>IEEE Electronic Library (IEL)</source><creator>Sohaib, Muhammad ; Jeong, Jongjin ; Jeon, Sang-Woon</creator><creatorcontrib>Sohaib, Muhammad ; Jeong, Jongjin ; Jeon, Sang-Woon</creatorcontrib><description>We consider a multichannel random access system in which each user accesses a single channel at each time slot to communicate with an access point (AP). Users arrive to the system at random and be activated for a certain period of time slots and then disappear from the system. Under such dynamic network environment, we propose a distributed multichannel access protocol based on multi-agent reinforcement learning (RL) to improve both throughput and fairness between active users. Unlike the previous approaches adjusting channel access probabilities at each time slot, the proposed RL algorithm deterministically selects a set of channel access policies for several consecutive time slots. To effectively reduce the complexity of the proposed RL algorithm, we adopt a branching dueling Q-network architecture and propose an efficient training methodology for producing proper Q-values over time-varying user sets. We perform extensive simulations on realistic traffic environments and demonstrate that the proposed online learning improves both throughput and fairness compared to the conventional RL approaches and centralized scheduling policies.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3126112</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer architecture ; deep learning ; Distance learning ; fairness ; Machine learning ; Measurement ; Multiagent systems ; Policies ; Quality of service ; Random access ; Real-time systems ; Reinforcement learning ; resource allocation ; Resource management ; Throughput ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2022-06, Vol.21 (6), p.3994-4008</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c5348ba80955fd002b5c860057dd8be79e34d698c5334e408fa38bfc031ff0403</citedby><cites>FETCH-LOGICAL-c291t-c5348ba80955fd002b5c860057dd8be79e34d698c5334e408fa38bfc031ff0403</cites><orcidid>0000-0002-0381-0258 ; 0000-0002-0199-2254 ; 0000-0002-7527-2268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9619960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9619960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sohaib, Muhammad</creatorcontrib><creatorcontrib>Jeong, Jongjin</creatorcontrib><creatorcontrib>Jeon, Sang-Woon</creatorcontrib><title>Dynamic Multichannel Access via Multi-Agent Reinforcement Learning: Throughput and Fairness Guarantees</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>We consider a multichannel random access system in which each user accesses a single channel at each time slot to communicate with an access point (AP). Users arrive to the system at random and be activated for a certain period of time slots and then disappear from the system. Under such dynamic network environment, we propose a distributed multichannel access protocol based on multi-agent reinforcement learning (RL) to improve both throughput and fairness between active users. Unlike the previous approaches adjusting channel access probabilities at each time slot, the proposed RL algorithm deterministically selects a set of channel access policies for several consecutive time slots. To effectively reduce the complexity of the proposed RL algorithm, we adopt a branching dueling Q-network architecture and propose an efficient training methodology for producing proper Q-values over time-varying user sets. We perform extensive simulations on realistic traffic environments and demonstrate that the proposed online learning improves both throughput and fairness compared to the conventional RL approaches and centralized scheduling policies.</description><subject>Algorithms</subject><subject>Computer architecture</subject><subject>deep learning</subject><subject>Distance learning</subject><subject>fairness</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Multiagent systems</subject><subject>Policies</subject><subject>Quality of service</subject><subject>Random access</subject><subject>Real-time systems</subject><subject>Reinforcement learning</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Throughput</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4soOKd3wUvBc-dL0qSJtzHdFCaCTDyWNH3ZMrZ0Jq2w_96Wiaf3g8_3PfgkyS2BCSGgHlZfswkFSiaMUEEIPUtGhHOZUZrL86FnIiO0EJfJVYxbAFIIzkeJfTp6vXcmfet2rTMb7T3u0qkxGGP64_Rpn03X6Nv0A523TTC4H6Yl6uCdXz-mq01ouvXm0LWp9nU61y74Ib_odNC-RYzXyYXVu4g3f3WcfM6fV7OXbPm-eJ1Nl5mhirSZ4SyXlZagOLc1AK24kQKAF3UtKywUsrwWSvYcyzEHaTWTlTXAiLWQAxsn96e7h9B8dxjbctt0wfcvSyoKDjkjsugpOFEmNDEGtOUhuL0Ox5JAOdgse5vlYLP8s9lH7k4Rh4j_uBJEKQHsFzp8cME</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Sohaib, Muhammad</creator><creator>Jeong, Jongjin</creator><creator>Jeon, Sang-Woon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0381-0258</orcidid><orcidid>https://orcid.org/0000-0002-0199-2254</orcidid><orcidid>https://orcid.org/0000-0002-7527-2268</orcidid></search><sort><creationdate>202206</creationdate><title>Dynamic Multichannel Access via Multi-Agent Reinforcement Learning: Throughput and Fairness Guarantees</title><author>Sohaib, Muhammad ; Jeong, Jongjin ; Jeon, Sang-Woon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c5348ba80955fd002b5c860057dd8be79e34d698c5334e408fa38bfc031ff0403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computer architecture</topic><topic>deep learning</topic><topic>Distance learning</topic><topic>fairness</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Multiagent systems</topic><topic>Policies</topic><topic>Quality of service</topic><topic>Random access</topic><topic>Real-time systems</topic><topic>Reinforcement learning</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Throughput</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohaib, Muhammad</creatorcontrib><creatorcontrib>Jeong, Jongjin</creatorcontrib><creatorcontrib>Jeon, Sang-Woon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sohaib, Muhammad</au><au>Jeong, Jongjin</au><au>Jeon, Sang-Woon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Multichannel Access via Multi-Agent Reinforcement Learning: Throughput and Fairness Guarantees</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-06</date><risdate>2022</risdate><volume>21</volume><issue>6</issue><spage>3994</spage><epage>4008</epage><pages>3994-4008</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>We consider a multichannel random access system in which each user accesses a single channel at each time slot to communicate with an access point (AP). Users arrive to the system at random and be activated for a certain period of time slots and then disappear from the system. Under such dynamic network environment, we propose a distributed multichannel access protocol based on multi-agent reinforcement learning (RL) to improve both throughput and fairness between active users. Unlike the previous approaches adjusting channel access probabilities at each time slot, the proposed RL algorithm deterministically selects a set of channel access policies for several consecutive time slots. To effectively reduce the complexity of the proposed RL algorithm, we adopt a branching dueling Q-network architecture and propose an efficient training methodology for producing proper Q-values over time-varying user sets. We perform extensive simulations on realistic traffic environments and demonstrate that the proposed online learning improves both throughput and fairness compared to the conventional RL approaches and centralized scheduling policies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3126112</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0381-0258</orcidid><orcidid>https://orcid.org/0000-0002-0199-2254</orcidid><orcidid>https://orcid.org/0000-0002-7527-2268</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2022-06, Vol.21 (6), p.3994-4008
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_9619960
source IEEE Electronic Library (IEL)
subjects Algorithms
Computer architecture
deep learning
Distance learning
fairness
Machine learning
Measurement
Multiagent systems
Policies
Quality of service
Random access
Real-time systems
Reinforcement learning
resource allocation
Resource management
Throughput
Wireless communication
title Dynamic Multichannel Access via Multi-Agent Reinforcement Learning: Throughput and Fairness Guarantees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Multichannel%20Access%20via%20Multi-Agent%20Reinforcement%20Learning:%20Throughput%20and%20Fairness%20Guarantees&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Sohaib,%20Muhammad&rft.date=2022-06&rft.volume=21&rft.issue=6&rft.spage=3994&rft.epage=4008&rft.pages=3994-4008&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3126112&rft_dat=%3Cproquest_RIE%3E2675043187%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675043187&rft_id=info:pmid/&rft_ieee_id=9619960&rfr_iscdi=true