Accuracy-Based Task Offloading and Resource Allocation for Edge Intelligence in IoT

Machine learning (ML) tasks in Internet of Things (IoT) are sensitive to task inference accuracy. In this letter, an ML task offloading scheme is proposed to minimize the total delay of task processing in an edge-intelligence-enabled IoT scenario, while guaranteeing the accuracy requirements of task...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2022-02, Vol.11 (2), p.371-375
Hauptverfasser: Fan, Wenhao, Chen, Zeyu, Su, Yi, Wu, Fan, Tang, Bihua, Liu, Yuan'an
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 2
container_start_page 371
container_title IEEE wireless communications letters
container_volume 11
creator Fan, Wenhao
Chen, Zeyu
Su, Yi
Wu, Fan
Tang, Bihua
Liu, Yuan'an
description Machine learning (ML) tasks in Internet of Things (IoT) are sensitive to task inference accuracy. In this letter, an ML task offloading scheme is proposed to minimize the total delay of task processing in an edge-intelligence-enabled IoT scenario, while guaranteeing the accuracy requirements of tasks, and taking into account the multiple attributes of tasks, task inference accuracy, and impact of error inference on task processing delay. The problem of wireless channel allocation, and computing resource allocation is modeled along with the task offloading. Considering the high complexity of the optimization problem, we design an algorithm which decomposes the problem into a computing resource allocation sub-problem and a task offloading and channel allocation sub-problem, and then solves them separately. In extensive simulations, the superiority of our scheme is demonstrated in comparisons with 4 other schemes.
doi_str_mv 10.1109/LWC.2021.3128911
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9619485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9619485</ieee_id><sourcerecordid>2626973200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2e25c6ea916c7c9d24e56f7235f1d79ef38ad4a234802bca0d9053ff9287a9be3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMoWLR3wUvA89Zk0s1ujrVULRQKWvEY0mRStq6bmmwP_femtHQuM4c3X4-QB85GnDP1vPiejoABHwkOteL8igyASyhAjMvrSy2qWzJMactySMaB1wPyObF2H409FC8moaMrk37o0vs2GNd0G2o6Rz8whX20SCdtG6zpm9BRHyKduQ3Seddj2zYb7DLQdHQeVvfkxps24fCc78jX62w1fS8Wy7f5dLIoLCjeF4BQWolGcWkrqxyMsZS-AlF67iqFXtTGjU3-oWawtoY5xUrhvYK6MmqN4o48nebuYvjbY-r1Nt_Z5ZUaJEhVCWAsU-xE2RhSiuj1Lja_Jh40Z_poT2d7-mhPn-3llsdTS4OIF1xJrsZ1Kf4BmLBpqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626973200</pqid></control><display><type>article</type><title>Accuracy-Based Task Offloading and Resource Allocation for Edge Intelligence in IoT</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Wenhao ; Chen, Zeyu ; Su, Yi ; Wu, Fan ; Tang, Bihua ; Liu, Yuan'an</creator><creatorcontrib>Fan, Wenhao ; Chen, Zeyu ; Su, Yi ; Wu, Fan ; Tang, Bihua ; Liu, Yuan'an</creatorcontrib><description>Machine learning (ML) tasks in Internet of Things (IoT) are sensitive to task inference accuracy. In this letter, an ML task offloading scheme is proposed to minimize the total delay of task processing in an edge-intelligence-enabled IoT scenario, while guaranteeing the accuracy requirements of tasks, and taking into account the multiple attributes of tasks, task inference accuracy, and impact of error inference on task processing delay. The problem of wireless channel allocation, and computing resource allocation is modeled along with the task offloading. Considering the high complexity of the optimization problem, we design an algorithm which decomposes the problem into a computing resource allocation sub-problem and a task offloading and channel allocation sub-problem, and then solves them separately. In extensive simulations, the superiority of our scheme is demonstrated in comparisons with 4 other schemes.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2021.3128911</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; cloud computing ; Computation offloading ; Computational modeling ; Delays ; Design optimization ; edge computing ; Edge intelligence ; Inference ; Intelligence ; Internet of Things ; IoT ; Machine learning ; Resource allocation ; Resource management ; Task analysis ; task offloading ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE wireless communications letters, 2022-02, Vol.11 (2), p.371-375</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2e25c6ea916c7c9d24e56f7235f1d79ef38ad4a234802bca0d9053ff9287a9be3</citedby><cites>FETCH-LOGICAL-c291t-2e25c6ea916c7c9d24e56f7235f1d79ef38ad4a234802bca0d9053ff9287a9be3</cites><orcidid>0000-0002-1286-7141 ; 0000-0002-5834-8240 ; 0000-0001-5288-8708 ; 0000-0002-8076-1904 ; 0000-0002-0431-9903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9619485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9619485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan, Wenhao</creatorcontrib><creatorcontrib>Chen, Zeyu</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Tang, Bihua</creatorcontrib><creatorcontrib>Liu, Yuan'an</creatorcontrib><title>Accuracy-Based Task Offloading and Resource Allocation for Edge Intelligence in IoT</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Machine learning (ML) tasks in Internet of Things (IoT) are sensitive to task inference accuracy. In this letter, an ML task offloading scheme is proposed to minimize the total delay of task processing in an edge-intelligence-enabled IoT scenario, while guaranteeing the accuracy requirements of tasks, and taking into account the multiple attributes of tasks, task inference accuracy, and impact of error inference on task processing delay. The problem of wireless channel allocation, and computing resource allocation is modeled along with the task offloading. Considering the high complexity of the optimization problem, we design an algorithm which decomposes the problem into a computing resource allocation sub-problem and a task offloading and channel allocation sub-problem, and then solves them separately. In extensive simulations, the superiority of our scheme is demonstrated in comparisons with 4 other schemes.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>cloud computing</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Delays</subject><subject>Design optimization</subject><subject>edge computing</subject><subject>Edge intelligence</subject><subject>Inference</subject><subject>Intelligence</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Machine learning</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Task analysis</subject><subject>task offloading</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQQIMoWLR3wUvA89Zk0s1ujrVULRQKWvEY0mRStq6bmmwP_femtHQuM4c3X4-QB85GnDP1vPiejoABHwkOteL8igyASyhAjMvrSy2qWzJMactySMaB1wPyObF2H409FC8moaMrk37o0vs2GNd0G2o6Rz8whX20SCdtG6zpm9BRHyKduQ3Seddj2zYb7DLQdHQeVvfkxps24fCc78jX62w1fS8Wy7f5dLIoLCjeF4BQWolGcWkrqxyMsZS-AlF67iqFXtTGjU3-oWawtoY5xUrhvYK6MmqN4o48nebuYvjbY-r1Nt_Z5ZUaJEhVCWAsU-xE2RhSiuj1Lja_Jh40Z_poT2d7-mhPn-3llsdTS4OIF1xJrsZ1Kf4BmLBpqQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Fan, Wenhao</creator><creator>Chen, Zeyu</creator><creator>Su, Yi</creator><creator>Wu, Fan</creator><creator>Tang, Bihua</creator><creator>Liu, Yuan'an</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1286-7141</orcidid><orcidid>https://orcid.org/0000-0002-5834-8240</orcidid><orcidid>https://orcid.org/0000-0001-5288-8708</orcidid><orcidid>https://orcid.org/0000-0002-8076-1904</orcidid><orcidid>https://orcid.org/0000-0002-0431-9903</orcidid></search><sort><creationdate>20220201</creationdate><title>Accuracy-Based Task Offloading and Resource Allocation for Edge Intelligence in IoT</title><author>Fan, Wenhao ; Chen, Zeyu ; Su, Yi ; Wu, Fan ; Tang, Bihua ; Liu, Yuan'an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2e25c6ea916c7c9d24e56f7235f1d79ef38ad4a234802bca0d9053ff9287a9be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>cloud computing</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Delays</topic><topic>Design optimization</topic><topic>edge computing</topic><topic>Edge intelligence</topic><topic>Inference</topic><topic>Intelligence</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Machine learning</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Task analysis</topic><topic>task offloading</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Wenhao</creatorcontrib><creatorcontrib>Chen, Zeyu</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Tang, Bihua</creatorcontrib><creatorcontrib>Liu, Yuan'an</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Wenhao</au><au>Chen, Zeyu</au><au>Su, Yi</au><au>Wu, Fan</au><au>Tang, Bihua</au><au>Liu, Yuan'an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy-Based Task Offloading and Resource Allocation for Edge Intelligence in IoT</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>11</volume><issue>2</issue><spage>371</spage><epage>375</epage><pages>371-375</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Machine learning (ML) tasks in Internet of Things (IoT) are sensitive to task inference accuracy. In this letter, an ML task offloading scheme is proposed to minimize the total delay of task processing in an edge-intelligence-enabled IoT scenario, while guaranteeing the accuracy requirements of tasks, and taking into account the multiple attributes of tasks, task inference accuracy, and impact of error inference on task processing delay. The problem of wireless channel allocation, and computing resource allocation is modeled along with the task offloading. Considering the high complexity of the optimization problem, we design an algorithm which decomposes the problem into a computing resource allocation sub-problem and a task offloading and channel allocation sub-problem, and then solves them separately. In extensive simulations, the superiority of our scheme is demonstrated in comparisons with 4 other schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2021.3128911</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1286-7141</orcidid><orcidid>https://orcid.org/0000-0002-5834-8240</orcidid><orcidid>https://orcid.org/0000-0001-5288-8708</orcidid><orcidid>https://orcid.org/0000-0002-8076-1904</orcidid><orcidid>https://orcid.org/0000-0002-0431-9903</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2022-02, Vol.11 (2), p.371-375
issn 2162-2337
2162-2345
language eng
recordid cdi_ieee_primary_9619485
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
cloud computing
Computation offloading
Computational modeling
Delays
Design optimization
edge computing
Edge intelligence
Inference
Intelligence
Internet of Things
IoT
Machine learning
Resource allocation
Resource management
Task analysis
task offloading
Wireless communication
Wireless sensor networks
title Accuracy-Based Task Offloading and Resource Allocation for Edge Intelligence in IoT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy-Based%20Task%20Offloading%20and%20Resource%20Allocation%20for%20Edge%20Intelligence%20in%20IoT&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Fan,%20Wenhao&rft.date=2022-02-01&rft.volume=11&rft.issue=2&rft.spage=371&rft.epage=375&rft.pages=371-375&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2021.3128911&rft_dat=%3Cproquest_RIE%3E2626973200%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626973200&rft_id=info:pmid/&rft_ieee_id=9619485&rfr_iscdi=true