Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm

We present a novel distributed robotic swarm algorithm inspired by the open channel siphon phenomenon displayed in certain viscoelastic fluids. Self-siphoning viscoelastic fluids are often able to mitigate the trapping effects of local minima in the environment. Using a similar strategy, our algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-04, Vol.7 (2), p.1000-1007
Hauptverfasser: McGuire, Loy, Schuler, Tristan, Otte, Michael, Sofge, Donald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 2
container_start_page 1000
container_title IEEE robotics and automation letters
container_volume 7
creator McGuire, Loy
Schuler, Tristan
Otte, Michael
Sofge, Donald
description We present a novel distributed robotic swarm algorithm inspired by the open channel siphon phenomenon displayed in certain viscoelastic fluids. Self-siphoning viscoelastic fluids are often able to mitigate the trapping effects of local minima in the environment. Using a similar strategy, our algorithm enables a robot swarm to mitigate the trapping effects of local minima in potential fields. Once a robot senses the goal, local communication between robots is used to propagate path-to-goal gradient information through the swarm's communication graph. This information is used to augment each agent's local potential field, reducing the local minima traps and often eliminating them. We perform hardware experiments using the Georgia Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic platforms as well as Monte Carlo simulations conducted in the Simulating Collaborative Robots in Massive Multi-Agent Game Execution (SCRIMMAGE) simulator. We compare the new method to other potential field based swarm behaviors that both do and do not incorporate local minima fixes. The distributed algorithm generates self-siphoning behavior within the robotic swarm, and this reduces its susceptibility to local minima.
doi_str_mv 10.1109/LRA.2021.3128705
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9618840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9618840</ieee_id><sourcerecordid>2615163963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bf50c2cd739bb535c99e19fe5f96cb62550779b0b735851a1cc1032fded58d983</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOObeBV8CPnfmwySNb3M4HVSEbfoa0jS1GV1Tk1bZf2_Hhvh0L9xz7j33B8A1RlOMkbzLVrMpQQRPKSapQOwMjAgVIqGC8_N__SWYxLhFCGFGBJVsBPyHi8bbWsfOGbioe1ckyya2LtgCrn902MFHW-lv5wPsPFzZojcWrvtobNu53NWu2x8GmTe6hq-ucTv9ADeVhfNKuwauXVv5Bs7qTx9cV-2uwEWp62gnpzoG74unzfwlyd6el_NZlhgicZfkJUOGmGIImeeMMiOlxbK0rJTc5JwwhoSQOcoFZSnDGhuDESVlYQuWFjKlY3B73NsG_9Xb2Kmt70MznFSEY4Y5lZwOKnRUmeBjDLZUbRgeCHuFkTqQVQNZdSCrTmQHy83R4qy1f3LJcZreI_oLrdF0fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615163963</pqid></control><display><type>article</type><title>Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>McGuire, Loy ; Schuler, Tristan ; Otte, Michael ; Sofge, Donald</creator><creatorcontrib>McGuire, Loy ; Schuler, Tristan ; Otte, Michael ; Sofge, Donald</creatorcontrib><description>We present a novel distributed robotic swarm algorithm inspired by the open channel siphon phenomenon displayed in certain viscoelastic fluids. Self-siphoning viscoelastic fluids are often able to mitigate the trapping effects of local minima in the environment. Using a similar strategy, our algorithm enables a robot swarm to mitigate the trapping effects of local minima in potential fields. Once a robot senses the goal, local communication between robots is used to propagate path-to-goal gradient information through the swarm's communication graph. This information is used to augment each agent's local potential field, reducing the local minima traps and often eliminating them. We perform hardware experiments using the Georgia Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic platforms as well as Monte Carlo simulations conducted in the Simulating Collaborative Robots in Massive Multi-Agent Game Execution (SCRIMMAGE) simulator. We compare the new method to other potential field based swarm behaviors that both do and do not incorporate local minima fixes. The distributed algorithm generates self-siphoning behavior within the robotic swarm, and this reduces its susceptibility to local minima.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3128705</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Collision avoidance ; Computer simulation ; distributed robot systems ; Heuristic algorithms ; Mathematical models ; Multiagent systems ; Open channels ; Planning ; planning under uncertainty ; Potential fields ; Robot kinematics ; Robot sensing systems ; Robotics ; Robots ; Siphoning ; Swarm robotics ; Trapping ; Viscoelastic fluids ; Viscoelasticity</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1000-1007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bf50c2cd739bb535c99e19fe5f96cb62550779b0b735851a1cc1032fded58d983</citedby><cites>FETCH-LOGICAL-c291t-bf50c2cd739bb535c99e19fe5f96cb62550779b0b735851a1cc1032fded58d983</cites><orcidid>0000-0003-0153-3581 ; 0000-0002-1222-6993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9618840$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9618840$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McGuire, Loy</creatorcontrib><creatorcontrib>Schuler, Tristan</creatorcontrib><creatorcontrib>Otte, Michael</creatorcontrib><creatorcontrib>Sofge, Donald</creatorcontrib><title>Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>We present a novel distributed robotic swarm algorithm inspired by the open channel siphon phenomenon displayed in certain viscoelastic fluids. Self-siphoning viscoelastic fluids are often able to mitigate the trapping effects of local minima in the environment. Using a similar strategy, our algorithm enables a robot swarm to mitigate the trapping effects of local minima in potential fields. Once a robot senses the goal, local communication between robots is used to propagate path-to-goal gradient information through the swarm's communication graph. This information is used to augment each agent's local potential field, reducing the local minima traps and often eliminating them. We perform hardware experiments using the Georgia Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic platforms as well as Monte Carlo simulations conducted in the Simulating Collaborative Robots in Massive Multi-Agent Game Execution (SCRIMMAGE) simulator. We compare the new method to other potential field based swarm behaviors that both do and do not incorporate local minima fixes. The distributed algorithm generates self-siphoning behavior within the robotic swarm, and this reduces its susceptibility to local minima.</description><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Computer simulation</subject><subject>distributed robot systems</subject><subject>Heuristic algorithms</subject><subject>Mathematical models</subject><subject>Multiagent systems</subject><subject>Open channels</subject><subject>Planning</subject><subject>planning under uncertainty</subject><subject>Potential fields</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robots</subject><subject>Siphoning</subject><subject>Swarm robotics</subject><subject>Trapping</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1LwzAUxYMoOObeBV8CPnfmwySNb3M4HVSEbfoa0jS1GV1Tk1bZf2_Hhvh0L9xz7j33B8A1RlOMkbzLVrMpQQRPKSapQOwMjAgVIqGC8_N__SWYxLhFCGFGBJVsBPyHi8bbWsfOGbioe1ckyya2LtgCrn902MFHW-lv5wPsPFzZojcWrvtobNu53NWu2x8GmTe6hq-ucTv9ADeVhfNKuwauXVv5Bs7qTx9cV-2uwEWp62gnpzoG74unzfwlyd6el_NZlhgicZfkJUOGmGIImeeMMiOlxbK0rJTc5JwwhoSQOcoFZSnDGhuDESVlYQuWFjKlY3B73NsG_9Xb2Kmt70MznFSEY4Y5lZwOKnRUmeBjDLZUbRgeCHuFkTqQVQNZdSCrTmQHy83R4qy1f3LJcZreI_oLrdF0fA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>McGuire, Loy</creator><creator>Schuler, Tristan</creator><creator>Otte, Michael</creator><creator>Sofge, Donald</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0153-3581</orcidid><orcidid>https://orcid.org/0000-0002-1222-6993</orcidid></search><sort><creationdate>20220401</creationdate><title>Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm</title><author>McGuire, Loy ; Schuler, Tristan ; Otte, Michael ; Sofge, Donald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bf50c2cd739bb535c99e19fe5f96cb62550779b0b735851a1cc1032fded58d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Computer simulation</topic><topic>distributed robot systems</topic><topic>Heuristic algorithms</topic><topic>Mathematical models</topic><topic>Multiagent systems</topic><topic>Open channels</topic><topic>Planning</topic><topic>planning under uncertainty</topic><topic>Potential fields</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robots</topic><topic>Siphoning</topic><topic>Swarm robotics</topic><topic>Trapping</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGuire, Loy</creatorcontrib><creatorcontrib>Schuler, Tristan</creatorcontrib><creatorcontrib>Otte, Michael</creatorcontrib><creatorcontrib>Sofge, Donald</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McGuire, Loy</au><au>Schuler, Tristan</au><au>Otte, Michael</au><au>Sofge, Donald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>1000</spage><epage>1007</epage><pages>1000-1007</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>We present a novel distributed robotic swarm algorithm inspired by the open channel siphon phenomenon displayed in certain viscoelastic fluids. Self-siphoning viscoelastic fluids are often able to mitigate the trapping effects of local minima in the environment. Using a similar strategy, our algorithm enables a robot swarm to mitigate the trapping effects of local minima in potential fields. Once a robot senses the goal, local communication between robots is used to propagate path-to-goal gradient information through the swarm's communication graph. This information is used to augment each agent's local potential field, reducing the local minima traps and often eliminating them. We perform hardware experiments using the Georgia Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic platforms as well as Monte Carlo simulations conducted in the Simulating Collaborative Robots in Massive Multi-Agent Game Execution (SCRIMMAGE) simulator. We compare the new method to other potential field based swarm behaviors that both do and do not incorporate local minima fixes. The distributed algorithm generates self-siphoning behavior within the robotic swarm, and this reduces its susceptibility to local minima.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3128705</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0153-3581</orcidid><orcidid>https://orcid.org/0000-0002-1222-6993</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1000-1007
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9618840
source IEEE Electronic Library (IEL)
subjects Algorithms
Collision avoidance
Computer simulation
distributed robot systems
Heuristic algorithms
Mathematical models
Multiagent systems
Open channels
Planning
planning under uncertainty
Potential fields
Robot kinematics
Robot sensing systems
Robotics
Robots
Siphoning
Swarm robotics
Trapping
Viscoelastic fluids
Viscoelasticity
title Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20Fluid-Inspired%20Swarm%20Behavior%20to%20Reduce%20Susceptibility%20to%20Local%20Minima:%20The%20Chain%20Siphon%20Algorithm&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=McGuire,%20Loy&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=1000&rft.epage=1007&rft.pages=1000-1007&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3128705&rft_dat=%3Cproquest_RIE%3E2615163963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615163963&rft_id=info:pmid/&rft_ieee_id=9618840&rfr_iscdi=true