Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm
We present a novel distributed robotic swarm algorithm inspired by the open channel siphon phenomenon displayed in certain viscoelastic fluids. Self-siphoning viscoelastic fluids are often able to mitigate the trapping effects of local minima in the environment. Using a similar strategy, our algorit...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-04, Vol.7 (2), p.1000-1007 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1007 |
---|---|
container_issue | 2 |
container_start_page | 1000 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | McGuire, Loy Schuler, Tristan Otte, Michael Sofge, Donald |
description | We present a novel distributed robotic swarm algorithm inspired by the open channel siphon phenomenon displayed in certain viscoelastic fluids. Self-siphoning viscoelastic fluids are often able to mitigate the trapping effects of local minima in the environment. Using a similar strategy, our algorithm enables a robot swarm to mitigate the trapping effects of local minima in potential fields. Once a robot senses the goal, local communication between robots is used to propagate path-to-goal gradient information through the swarm's communication graph. This information is used to augment each agent's local potential field, reducing the local minima traps and often eliminating them. We perform hardware experiments using the Georgia Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic platforms as well as Monte Carlo simulations conducted in the Simulating Collaborative Robots in Massive Multi-Agent Game Execution (SCRIMMAGE) simulator. We compare the new method to other potential field based swarm behaviors that both do and do not incorporate local minima fixes. The distributed algorithm generates self-siphoning behavior within the robotic swarm, and this reduces its susceptibility to local minima. |
doi_str_mv | 10.1109/LRA.2021.3128705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9618840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9618840</ieee_id><sourcerecordid>2615163963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bf50c2cd739bb535c99e19fe5f96cb62550779b0b735851a1cc1032fded58d983</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOObeBV8CPnfmwySNb3M4HVSEbfoa0jS1GV1Tk1bZf2_Hhvh0L9xz7j33B8A1RlOMkbzLVrMpQQRPKSapQOwMjAgVIqGC8_N__SWYxLhFCGFGBJVsBPyHi8bbWsfOGbioe1ckyya2LtgCrn902MFHW-lv5wPsPFzZojcWrvtobNu53NWu2x8GmTe6hq-ucTv9ADeVhfNKuwauXVv5Bs7qTx9cV-2uwEWp62gnpzoG74unzfwlyd6el_NZlhgicZfkJUOGmGIImeeMMiOlxbK0rJTc5JwwhoSQOcoFZSnDGhuDESVlYQuWFjKlY3B73NsG_9Xb2Kmt70MznFSEY4Y5lZwOKnRUmeBjDLZUbRgeCHuFkTqQVQNZdSCrTmQHy83R4qy1f3LJcZreI_oLrdF0fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615163963</pqid></control><display><type>article</type><title>Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>McGuire, Loy ; Schuler, Tristan ; Otte, Michael ; Sofge, Donald</creator><creatorcontrib>McGuire, Loy ; Schuler, Tristan ; Otte, Michael ; Sofge, Donald</creatorcontrib><description>We present a novel distributed robotic swarm algorithm inspired by the open channel siphon phenomenon displayed in certain viscoelastic fluids. Self-siphoning viscoelastic fluids are often able to mitigate the trapping effects of local minima in the environment. Using a similar strategy, our algorithm enables a robot swarm to mitigate the trapping effects of local minima in potential fields. Once a robot senses the goal, local communication between robots is used to propagate path-to-goal gradient information through the swarm's communication graph. This information is used to augment each agent's local potential field, reducing the local minima traps and often eliminating them. We perform hardware experiments using the Georgia Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic platforms as well as Monte Carlo simulations conducted in the Simulating Collaborative Robots in Massive Multi-Agent Game Execution (SCRIMMAGE) simulator. We compare the new method to other potential field based swarm behaviors that both do and do not incorporate local minima fixes. The distributed algorithm generates self-siphoning behavior within the robotic swarm, and this reduces its susceptibility to local minima.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3128705</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Collision avoidance ; Computer simulation ; distributed robot systems ; Heuristic algorithms ; Mathematical models ; Multiagent systems ; Open channels ; Planning ; planning under uncertainty ; Potential fields ; Robot kinematics ; Robot sensing systems ; Robotics ; Robots ; Siphoning ; Swarm robotics ; Trapping ; Viscoelastic fluids ; Viscoelasticity</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1000-1007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bf50c2cd739bb535c99e19fe5f96cb62550779b0b735851a1cc1032fded58d983</citedby><cites>FETCH-LOGICAL-c291t-bf50c2cd739bb535c99e19fe5f96cb62550779b0b735851a1cc1032fded58d983</cites><orcidid>0000-0003-0153-3581 ; 0000-0002-1222-6993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9618840$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9618840$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McGuire, Loy</creatorcontrib><creatorcontrib>Schuler, Tristan</creatorcontrib><creatorcontrib>Otte, Michael</creatorcontrib><creatorcontrib>Sofge, Donald</creatorcontrib><title>Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>We present a novel distributed robotic swarm algorithm inspired by the open channel siphon phenomenon displayed in certain viscoelastic fluids. Self-siphoning viscoelastic fluids are often able to mitigate the trapping effects of local minima in the environment. Using a similar strategy, our algorithm enables a robot swarm to mitigate the trapping effects of local minima in potential fields. Once a robot senses the goal, local communication between robots is used to propagate path-to-goal gradient information through the swarm's communication graph. This information is used to augment each agent's local potential field, reducing the local minima traps and often eliminating them. We perform hardware experiments using the Georgia Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic platforms as well as Monte Carlo simulations conducted in the Simulating Collaborative Robots in Massive Multi-Agent Game Execution (SCRIMMAGE) simulator. We compare the new method to other potential field based swarm behaviors that both do and do not incorporate local minima fixes. The distributed algorithm generates self-siphoning behavior within the robotic swarm, and this reduces its susceptibility to local minima.</description><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Computer simulation</subject><subject>distributed robot systems</subject><subject>Heuristic algorithms</subject><subject>Mathematical models</subject><subject>Multiagent systems</subject><subject>Open channels</subject><subject>Planning</subject><subject>planning under uncertainty</subject><subject>Potential fields</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robots</subject><subject>Siphoning</subject><subject>Swarm robotics</subject><subject>Trapping</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1LwzAUxYMoOObeBV8CPnfmwySNb3M4HVSEbfoa0jS1GV1Tk1bZf2_Hhvh0L9xz7j33B8A1RlOMkbzLVrMpQQRPKSapQOwMjAgVIqGC8_N__SWYxLhFCGFGBJVsBPyHi8bbWsfOGbioe1ckyya2LtgCrn902MFHW-lv5wPsPFzZojcWrvtobNu53NWu2x8GmTe6hq-ucTv9ADeVhfNKuwauXVv5Bs7qTx9cV-2uwEWp62gnpzoG74unzfwlyd6el_NZlhgicZfkJUOGmGIImeeMMiOlxbK0rJTc5JwwhoSQOcoFZSnDGhuDESVlYQuWFjKlY3B73NsG_9Xb2Kmt70MznFSEY4Y5lZwOKnRUmeBjDLZUbRgeCHuFkTqQVQNZdSCrTmQHy83R4qy1f3LJcZreI_oLrdF0fA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>McGuire, Loy</creator><creator>Schuler, Tristan</creator><creator>Otte, Michael</creator><creator>Sofge, Donald</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0153-3581</orcidid><orcidid>https://orcid.org/0000-0002-1222-6993</orcidid></search><sort><creationdate>20220401</creationdate><title>Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm</title><author>McGuire, Loy ; Schuler, Tristan ; Otte, Michael ; Sofge, Donald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bf50c2cd739bb535c99e19fe5f96cb62550779b0b735851a1cc1032fded58d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Computer simulation</topic><topic>distributed robot systems</topic><topic>Heuristic algorithms</topic><topic>Mathematical models</topic><topic>Multiagent systems</topic><topic>Open channels</topic><topic>Planning</topic><topic>planning under uncertainty</topic><topic>Potential fields</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robots</topic><topic>Siphoning</topic><topic>Swarm robotics</topic><topic>Trapping</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGuire, Loy</creatorcontrib><creatorcontrib>Schuler, Tristan</creatorcontrib><creatorcontrib>Otte, Michael</creatorcontrib><creatorcontrib>Sofge, Donald</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McGuire, Loy</au><au>Schuler, Tristan</au><au>Otte, Michael</au><au>Sofge, Donald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>1000</spage><epage>1007</epage><pages>1000-1007</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>We present a novel distributed robotic swarm algorithm inspired by the open channel siphon phenomenon displayed in certain viscoelastic fluids. Self-siphoning viscoelastic fluids are often able to mitigate the trapping effects of local minima in the environment. Using a similar strategy, our algorithm enables a robot swarm to mitigate the trapping effects of local minima in potential fields. Once a robot senses the goal, local communication between robots is used to propagate path-to-goal gradient information through the swarm's communication graph. This information is used to augment each agent's local potential field, reducing the local minima traps and often eliminating them. We perform hardware experiments using the Georgia Tech Miniature Autonomous Blimp (GT-MAB) aerial robotic platforms as well as Monte Carlo simulations conducted in the Simulating Collaborative Robots in Massive Multi-Agent Game Execution (SCRIMMAGE) simulator. We compare the new method to other potential field based swarm behaviors that both do and do not incorporate local minima fixes. The distributed algorithm generates self-siphoning behavior within the robotic swarm, and this reduces its susceptibility to local minima.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3128705</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0153-3581</orcidid><orcidid>https://orcid.org/0000-0002-1222-6993</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.1000-1007 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9618840 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Collision avoidance Computer simulation distributed robot systems Heuristic algorithms Mathematical models Multiagent systems Open channels Planning planning under uncertainty Potential fields Robot kinematics Robot sensing systems Robotics Robots Siphoning Swarm robotics Trapping Viscoelastic fluids Viscoelasticity |
title | Viscoelastic Fluid-Inspired Swarm Behavior to Reduce Susceptibility to Local Minima: The Chain Siphon Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20Fluid-Inspired%20Swarm%20Behavior%20to%20Reduce%20Susceptibility%20to%20Local%20Minima:%20The%20Chain%20Siphon%20Algorithm&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=McGuire,%20Loy&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=1000&rft.epage=1007&rft.pages=1000-1007&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3128705&rft_dat=%3Cproquest_RIE%3E2615163963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615163963&rft_id=info:pmid/&rft_ieee_id=9618840&rfr_iscdi=true |