Aging Effects and Latent Interface-Trap Buildup in MOS Transistors
Effects of ~35 years of aging during storage are investigated on the radiation response and 1/ f noise of Oki nMOS and pMOS transistors with high oxygen vacancy densities in SiO 2 . Short-term interface-trap buildup during irradiation is enhanced significantly, relative to that observed in 1989, 19...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2021-12, Vol.68 (12), p.2724-2735 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2735 |
---|---|
container_issue | 12 |
container_start_page | 2724 |
container_title | IEEE transactions on nuclear science |
container_volume | 68 |
creator | Ding, Jiarui Zhang, En Xia Li, Kan Luo, Xuyi Gorchichko, Mariia Fleetwood, Daniel M. |
description | Effects of ~35 years of aging during storage are investigated on the radiation response and 1/ f noise of Oki nMOS and pMOS transistors with high oxygen vacancy densities in SiO 2 . Short-term interface-trap buildup during irradiation is enhanced significantly, relative to that observed in 1989, 1997, and 2008. In contrast, a similar latent interface-trap buildup is observed for aged pMOS devices irradiated and annealed at room and elevated temperatures at positive bias in this and earlier studies. The significant latent interface-trap buildup is observed for nMOS devices irradiated at 0 V and annealed at room and elevated temperatures under positive bias, a condition not evaluated in prior work. Results strongly suggest that latent interface-trap buildup is due to H 2 diffusion and dissociation at charged or dipolar O vacancies in SiO 2 , followed by proton transport to the Si/SiO 2 interface and reactions with Si-H complexes. Models that attribute latent interface-trap buildup to long-term proton trapping at O vacancies in SiO 2 appear to be ruled out by these results. Additional insight is provided into mechanisms of postirradiation interface- and border-trap buildup after long-term MOS device storage. |
doi_str_mv | 10.1109/TNS.2021.3128835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9617639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9617639</ieee_id><sourcerecordid>2610984180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9659c7819ef5ad36820a7427c3b6ba80c564d4a8326d0cc8aa1393fbcddcde0b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bLLJsS1VC6s9tJ5DNh9lS91dk-zBf29Ki6dhhuedGR4AHjGaYYzky-5zOyOI4BnFRAjKrsAEMyYKzCpxDSYIYVHIUspbcBfjIbclQ2wCFvN92-3hyntnUoS6s7DWyXUJrrvkgtfGFbugB7gY26MdB9h28GOzhXnWxTamPsR7cOP1MbqHS52Cr9fVbvle1Ju39XJeF4ZInArJmTSVwNJ5pi3lgiBdlaQytOGNFsgwXtpSC0q4RcYIrTGV1DfGWmMdaugUPJ_3DqH_GV1M6tCPocsnFeFZgSixQJlCZ8qEPsbgvBpC-63Dr8JInUypbEqdTKmLqRx5Okda59w_LjmueP7gDwpkY30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610984180</pqid></control><display><type>article</type><title>Aging Effects and Latent Interface-Trap Buildup in MOS Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Ding, Jiarui ; Zhang, En Xia ; Li, Kan ; Luo, Xuyi ; Gorchichko, Mariia ; Fleetwood, Daniel M.</creator><creatorcontrib>Ding, Jiarui ; Zhang, En Xia ; Li, Kan ; Luo, Xuyi ; Gorchichko, Mariia ; Fleetwood, Daniel M.</creatorcontrib><description>Effects of ~35 years of aging during storage are investigated on the radiation response and 1/<inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> noise of Oki nMOS and pMOS transistors with high oxygen vacancy densities in SiO 2 . Short-term interface-trap buildup during irradiation is enhanced significantly, relative to that observed in 1989, 1997, and 2008. In contrast, a similar latent interface-trap buildup is observed for aged pMOS devices irradiated and annealed at room and elevated temperatures at positive bias in this and earlier studies. The significant latent interface-trap buildup is observed for nMOS devices irradiated at 0 V and annealed at room and elevated temperatures under positive bias, a condition not evaluated in prior work. Results strongly suggest that latent interface-trap buildup is due to H 2 diffusion and dissociation at charged or dipolar O vacancies in SiO 2 , followed by proton transport to the Si/SiO 2 interface and reactions with Si-H complexes. Models that attribute latent interface-trap buildup to long-term proton trapping at O vacancies in SiO 2 appear to be ruled out by these results. Additional insight is provided into mechanisms of postirradiation interface- and border-trap buildup after long-term MOS device storage.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2021.3128835</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">f noise ; Aging ; Annealing ; Bias ; border traps ; High temperature ; Hydrogen ; interface traps ; Irradiation ; Low-frequency noise ; MOS devices ; MOS transistors ; MOSFET ; oxide traps ; Protons ; Radiation ; Radiation effects ; Semiconductor devices ; Silicon dioxide ; Transistors ; Vacancies</subject><ispartof>IEEE transactions on nuclear science, 2021-12, Vol.68 (12), p.2724-2735</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9659c7819ef5ad36820a7427c3b6ba80c564d4a8326d0cc8aa1393fbcddcde0b3</citedby><cites>FETCH-LOGICAL-c291t-9659c7819ef5ad36820a7427c3b6ba80c564d4a8326d0cc8aa1393fbcddcde0b3</cites><orcidid>0000-0003-4257-7142 ; 0000-0002-6704-3991 ; 0000-0002-6727-5493 ; 0000-0002-8021-2411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9617639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9617639$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding, Jiarui</creatorcontrib><creatorcontrib>Zhang, En Xia</creatorcontrib><creatorcontrib>Li, Kan</creatorcontrib><creatorcontrib>Luo, Xuyi</creatorcontrib><creatorcontrib>Gorchichko, Mariia</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><title>Aging Effects and Latent Interface-Trap Buildup in MOS Transistors</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Effects of ~35 years of aging during storage are investigated on the radiation response and 1/<inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> noise of Oki nMOS and pMOS transistors with high oxygen vacancy densities in SiO 2 . Short-term interface-trap buildup during irradiation is enhanced significantly, relative to that observed in 1989, 1997, and 2008. In contrast, a similar latent interface-trap buildup is observed for aged pMOS devices irradiated and annealed at room and elevated temperatures at positive bias in this and earlier studies. The significant latent interface-trap buildup is observed for nMOS devices irradiated at 0 V and annealed at room and elevated temperatures under positive bias, a condition not evaluated in prior work. Results strongly suggest that latent interface-trap buildup is due to H 2 diffusion and dissociation at charged or dipolar O vacancies in SiO 2 , followed by proton transport to the Si/SiO 2 interface and reactions with Si-H complexes. Models that attribute latent interface-trap buildup to long-term proton trapping at O vacancies in SiO 2 appear to be ruled out by these results. Additional insight is provided into mechanisms of postirradiation interface- and border-trap buildup after long-term MOS device storage.</description><subject>1/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">f noise</subject><subject>Aging</subject><subject>Annealing</subject><subject>Bias</subject><subject>border traps</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>interface traps</subject><subject>Irradiation</subject><subject>Low-frequency noise</subject><subject>MOS devices</subject><subject>MOS transistors</subject><subject>MOSFET</subject><subject>oxide traps</subject><subject>Protons</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Transistors</subject><subject>Vacancies</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bLLJsS1VC6s9tJ5DNh9lS91dk-zBf29Ki6dhhuedGR4AHjGaYYzky-5zOyOI4BnFRAjKrsAEMyYKzCpxDSYIYVHIUspbcBfjIbclQ2wCFvN92-3hyntnUoS6s7DWyXUJrrvkgtfGFbugB7gY26MdB9h28GOzhXnWxTamPsR7cOP1MbqHS52Cr9fVbvle1Ju39XJeF4ZInArJmTSVwNJ5pi3lgiBdlaQytOGNFsgwXtpSC0q4RcYIrTGV1DfGWmMdaugUPJ_3DqH_GV1M6tCPocsnFeFZgSixQJlCZ8qEPsbgvBpC-63Dr8JInUypbEqdTKmLqRx5Okda59w_LjmueP7gDwpkY30</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ding, Jiarui</creator><creator>Zhang, En Xia</creator><creator>Li, Kan</creator><creator>Luo, Xuyi</creator><creator>Gorchichko, Mariia</creator><creator>Fleetwood, Daniel M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4257-7142</orcidid><orcidid>https://orcid.org/0000-0002-6704-3991</orcidid><orcidid>https://orcid.org/0000-0002-6727-5493</orcidid><orcidid>https://orcid.org/0000-0002-8021-2411</orcidid></search><sort><creationdate>20211201</creationdate><title>Aging Effects and Latent Interface-Trap Buildup in MOS Transistors</title><author>Ding, Jiarui ; Zhang, En Xia ; Li, Kan ; Luo, Xuyi ; Gorchichko, Mariia ; Fleetwood, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9659c7819ef5ad36820a7427c3b6ba80c564d4a8326d0cc8aa1393fbcddcde0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">f noise</topic><topic>Aging</topic><topic>Annealing</topic><topic>Bias</topic><topic>border traps</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>interface traps</topic><topic>Irradiation</topic><topic>Low-frequency noise</topic><topic>MOS devices</topic><topic>MOS transistors</topic><topic>MOSFET</topic><topic>oxide traps</topic><topic>Protons</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Transistors</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jiarui</creatorcontrib><creatorcontrib>Zhang, En Xia</creatorcontrib><creatorcontrib>Li, Kan</creatorcontrib><creatorcontrib>Luo, Xuyi</creatorcontrib><creatorcontrib>Gorchichko, Mariia</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Jiarui</au><au>Zhang, En Xia</au><au>Li, Kan</au><au>Luo, Xuyi</au><au>Gorchichko, Mariia</au><au>Fleetwood, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aging Effects and Latent Interface-Trap Buildup in MOS Transistors</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>2724</spage><epage>2735</epage><pages>2724-2735</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Effects of ~35 years of aging during storage are investigated on the radiation response and 1/<inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> noise of Oki nMOS and pMOS transistors with high oxygen vacancy densities in SiO 2 . Short-term interface-trap buildup during irradiation is enhanced significantly, relative to that observed in 1989, 1997, and 2008. In contrast, a similar latent interface-trap buildup is observed for aged pMOS devices irradiated and annealed at room and elevated temperatures at positive bias in this and earlier studies. The significant latent interface-trap buildup is observed for nMOS devices irradiated at 0 V and annealed at room and elevated temperatures under positive bias, a condition not evaluated in prior work. Results strongly suggest that latent interface-trap buildup is due to H 2 diffusion and dissociation at charged or dipolar O vacancies in SiO 2 , followed by proton transport to the Si/SiO 2 interface and reactions with Si-H complexes. Models that attribute latent interface-trap buildup to long-term proton trapping at O vacancies in SiO 2 appear to be ruled out by these results. Additional insight is provided into mechanisms of postirradiation interface- and border-trap buildup after long-term MOS device storage.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2021.3128835</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4257-7142</orcidid><orcidid>https://orcid.org/0000-0002-6704-3991</orcidid><orcidid>https://orcid.org/0000-0002-6727-5493</orcidid><orcidid>https://orcid.org/0000-0002-8021-2411</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2021-12, Vol.68 (12), p.2724-2735 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_ieee_primary_9617639 |
source | IEEE Electronic Library (IEL) |
subjects | 1/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">f noise Aging Annealing Bias border traps High temperature Hydrogen interface traps Irradiation Low-frequency noise MOS devices MOS transistors MOSFET oxide traps Protons Radiation Radiation effects Semiconductor devices Silicon dioxide Transistors Vacancies |
title | Aging Effects and Latent Interface-Trap Buildup in MOS Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aging%20Effects%20and%20Latent%20Interface-Trap%20Buildup%20in%20MOS%20Transistors&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Ding,%20Jiarui&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=2724&rft.epage=2735&rft.pages=2724-2735&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2021.3128835&rft_dat=%3Cproquest_RIE%3E2610984180%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610984180&rft_id=info:pmid/&rft_ieee_id=9617639&rfr_iscdi=true |