Where and How to Transfer: Knowledge Aggregation-Induced Transferability Perception for Unsupervised Domain Adaptation
Unsupervised domain adaptation without accessing expensive annotation processes of target data has achieved remarkable successes in semantic segmentation. However, most existing state-of-the-art methods cannot explore whether semantic representations across domains are transferable or not, which may...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2024-03, Vol.46 (3), p.1664-1681 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1681 |
---|---|
container_issue | 3 |
container_start_page | 1664 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 46 |
creator | Dong, Jiahua Cong, Yang Sun, Gan Fang, Zhen Ding, Zhengming |
description | Unsupervised domain adaptation without accessing expensive annotation processes of target data has achieved remarkable successes in semantic segmentation. However, most existing state-of-the-art methods cannot explore whether semantic representations across domains are transferable or not, which may result in the negative transfer brought by irrelevant knowledge. To tackle this challenge, in this paper, we develop a novel K nowledge A ggregation-induced T ransferability P erception (KATP) module for unsupervised domain adaptation, which is a pioneering attempt to distinguish transferable or untransferable knowledge across domains. Specifically, the KATP module is designed to quantify which semantic knowledge across domains is transferable, by incorporating the transferability information propagation from constructed global category-wise prototypes. Based on KATP, we design a novel KATP Adaptation Network (KATPAN) to determine where and how to transfer. The KATPAN contains a transferable appearance translation module \mathcal {T}_A(\cdot) TA(·) and a transferable representation augmentation module \mathcal {T}_R(\cdot) TR(·) , where both modules construct a virtuous circle of performance promotion. \mathcal {T}_A(\cdot) TA(·) develops a transferability-aware information bottleneck to highlight where to adapt transferable visual characterizations and modality information; \mathcal {T}_R(\cdot) TR |
doi_str_mv | 10.1109/TPAMI.2021.3128560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9616392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9616392</ieee_id><sourcerecordid>2598542866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-60ee3bf87e6eef72e4e628bcdd9dca1505c0ccc5ef06789332b4360248629de73</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhi3Uqmxp_wCVKktcuGTxR-zYva2AlhVU5bCoR8uxJ9ugrB3sBMS_b5bd7qGnOcwz74zmQeiUkjmlRF-s7hc_l3NGGJ1zypSQ5AjNqOa64ILrd2hGqGSFUkwdo485PxJCS0H4B3TMy0qVrKIz9Pz7DyTANnh8E1_wEPEq2ZAbSN_wbYgvHfg14MV6nWBthzaGYhn86MAfOFu3XTu84ntIDvotgpuY8EPIYw_puc0TexU3tg144W0_vKV8Qu8b22X4vK8n6OH79eryprj79WN5ubgrHNdiKCQB4HWjKpAATcWgBMlU7bzX3lkqiHDEOSegIbJSmnNWl1wSVirJtIeKn6DzXW6f4tMIeTCbNjvoOhsgjtkwoZUomZJyQs_-Qx_jmMJ0nWGaTQ_mlPKJYjvKpZhzgsb0qd3Y9GooMVsr5s2K2VoxeyvT0Nd99FhvwB9G_mmYgC87oAWAQ1tLKvm0-i-1b5Iq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923123113</pqid></control><display><type>article</type><title>Where and How to Transfer: Knowledge Aggregation-Induced Transferability Perception for Unsupervised Domain Adaptation</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Dong, Jiahua ; Cong, Yang ; Sun, Gan ; Fang, Zhen ; Ding, Zhengming</creator><creatorcontrib>Dong, Jiahua ; Cong, Yang ; Sun, Gan ; Fang, Zhen ; Ding, Zhengming</creatorcontrib><description><![CDATA[Unsupervised domain adaptation without accessing expensive annotation processes of target data has achieved remarkable successes in semantic segmentation. However, most existing state-of-the-art methods cannot explore whether semantic representations across domains are transferable or not, which may result in the negative transfer brought by irrelevant knowledge. To tackle this challenge, in this paper, we develop a novel K nowledge A ggregation-induced T ransferability P erception (KATP) module for unsupervised domain adaptation, which is a pioneering attempt to distinguish transferable or untransferable knowledge across domains. Specifically, the KATP module is designed to quantify which semantic knowledge across domains is transferable, by incorporating the transferability information propagation from constructed global category-wise prototypes. Based on KATP, we design a novel KATP Adaptation Network (KATPAN) to determine where and how to transfer. The KATPAN contains a transferable appearance translation module <inline-formula><tex-math notation="LaTeX">\mathcal {T}_A(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>A</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq1-3128560.gif"/> </inline-formula> and a transferable representation augmentation module <inline-formula><tex-math notation="LaTeX">\mathcal {T}_R(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>R</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq2-3128560.gif"/> </inline-formula>, where both modules construct a virtuous circle of performance promotion. <inline-formula><tex-math notation="LaTeX">\mathcal {T}_A(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>A</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq3-3128560.gif"/> </inline-formula> develops a transferability-aware information bottleneck to highlight where to adapt transferable visual characterizations and modality information; <inline-formula><tex-math notation="LaTeX">\mathcal {T}_R(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>R</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq4-3128560.gif"/> </inline-formula> explores how to augment transferable representations while abandoning untransferable information, and promotes the translation performance of <inline-formula><tex-math notation="LaTeX">\mathcal {T}_A(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>A</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq5-3128560.gif"/> </inline-formula> in return. Comprehensive experiments on several representative benchmark datasets and a medical dataset support the state-of-the-art performance of our model.]]></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3128560</identifier><identifier>PMID: 34784271</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Adaptation models ; Datasets ; Knowledge engineering ; Knowledge management ; medical lesions diagnosis ; Modules ; Prototypes ; Representations ; Semantic segmentation ; Semantics ; State of the art ; Task analysis ; Transfer learning ; Uncertainty ; unsupervised domain adaptation ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-03, Vol.46 (3), p.1664-1681</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-60ee3bf87e6eef72e4e628bcdd9dca1505c0ccc5ef06789332b4360248629de73</citedby><cites>FETCH-LOGICAL-c395t-60ee3bf87e6eef72e4e628bcdd9dca1505c0ccc5ef06789332b4360248629de73</cites><orcidid>0000-0003-1111-6909 ; 0000-0003-0602-6255 ; 0000-0002-5102-0189 ; 0000-0001-8545-4447 ; 0000-0002-6994-5278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9616392$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9616392$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34784271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Jiahua</creatorcontrib><creatorcontrib>Cong, Yang</creatorcontrib><creatorcontrib>Sun, Gan</creatorcontrib><creatorcontrib>Fang, Zhen</creatorcontrib><creatorcontrib>Ding, Zhengming</creatorcontrib><title>Where and How to Transfer: Knowledge Aggregation-Induced Transferability Perception for Unsupervised Domain Adaptation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description><![CDATA[Unsupervised domain adaptation without accessing expensive annotation processes of target data has achieved remarkable successes in semantic segmentation. However, most existing state-of-the-art methods cannot explore whether semantic representations across domains are transferable or not, which may result in the negative transfer brought by irrelevant knowledge. To tackle this challenge, in this paper, we develop a novel K nowledge A ggregation-induced T ransferability P erception (KATP) module for unsupervised domain adaptation, which is a pioneering attempt to distinguish transferable or untransferable knowledge across domains. Specifically, the KATP module is designed to quantify which semantic knowledge across domains is transferable, by incorporating the transferability information propagation from constructed global category-wise prototypes. Based on KATP, we design a novel KATP Adaptation Network (KATPAN) to determine where and how to transfer. The KATPAN contains a transferable appearance translation module <inline-formula><tex-math notation="LaTeX">\mathcal {T}_A(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>A</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq1-3128560.gif"/> </inline-formula> and a transferable representation augmentation module <inline-formula><tex-math notation="LaTeX">\mathcal {T}_R(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>R</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq2-3128560.gif"/> </inline-formula>, where both modules construct a virtuous circle of performance promotion. <inline-formula><tex-math notation="LaTeX">\mathcal {T}_A(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>A</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq3-3128560.gif"/> </inline-formula> develops a transferability-aware information bottleneck to highlight where to adapt transferable visual characterizations and modality information; <inline-formula><tex-math notation="LaTeX">\mathcal {T}_R(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>R</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq4-3128560.gif"/> </inline-formula> explores how to augment transferable representations while abandoning untransferable information, and promotes the translation performance of <inline-formula><tex-math notation="LaTeX">\mathcal {T}_A(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>A</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq5-3128560.gif"/> </inline-formula> in return. Comprehensive experiments on several representative benchmark datasets and a medical dataset support the state-of-the-art performance of our model.]]></description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Datasets</subject><subject>Knowledge engineering</subject><subject>Knowledge management</subject><subject>medical lesions diagnosis</subject><subject>Modules</subject><subject>Prototypes</subject><subject>Representations</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>State of the art</subject><subject>Task analysis</subject><subject>Transfer learning</subject><subject>Uncertainty</subject><subject>unsupervised domain adaptation</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1P3DAQhi3Uqmxp_wCVKktcuGTxR-zYva2AlhVU5bCoR8uxJ9ugrB3sBMS_b5bd7qGnOcwz74zmQeiUkjmlRF-s7hc_l3NGGJ1zypSQ5AjNqOa64ILrd2hGqGSFUkwdo485PxJCS0H4B3TMy0qVrKIz9Pz7DyTANnh8E1_wEPEq2ZAbSN_wbYgvHfg14MV6nWBthzaGYhn86MAfOFu3XTu84ntIDvotgpuY8EPIYw_puc0TexU3tg144W0_vKV8Qu8b22X4vK8n6OH79eryprj79WN5ubgrHNdiKCQB4HWjKpAATcWgBMlU7bzX3lkqiHDEOSegIbJSmnNWl1wSVirJtIeKn6DzXW6f4tMIeTCbNjvoOhsgjtkwoZUomZJyQs_-Qx_jmMJ0nWGaTQ_mlPKJYjvKpZhzgsb0qd3Y9GooMVsr5s2K2VoxeyvT0Nd99FhvwB9G_mmYgC87oAWAQ1tLKvm0-i-1b5Iq</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Dong, Jiahua</creator><creator>Cong, Yang</creator><creator>Sun, Gan</creator><creator>Fang, Zhen</creator><creator>Ding, Zhengming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1111-6909</orcidid><orcidid>https://orcid.org/0000-0003-0602-6255</orcidid><orcidid>https://orcid.org/0000-0002-5102-0189</orcidid><orcidid>https://orcid.org/0000-0001-8545-4447</orcidid><orcidid>https://orcid.org/0000-0002-6994-5278</orcidid></search><sort><creationdate>20240301</creationdate><title>Where and How to Transfer: Knowledge Aggregation-Induced Transferability Perception for Unsupervised Domain Adaptation</title><author>Dong, Jiahua ; Cong, Yang ; Sun, Gan ; Fang, Zhen ; Ding, Zhengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-60ee3bf87e6eef72e4e628bcdd9dca1505c0ccc5ef06789332b4360248629de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Datasets</topic><topic>Knowledge engineering</topic><topic>Knowledge management</topic><topic>medical lesions diagnosis</topic><topic>Modules</topic><topic>Prototypes</topic><topic>Representations</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>State of the art</topic><topic>Task analysis</topic><topic>Transfer learning</topic><topic>Uncertainty</topic><topic>unsupervised domain adaptation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jiahua</creatorcontrib><creatorcontrib>Cong, Yang</creatorcontrib><creatorcontrib>Sun, Gan</creatorcontrib><creatorcontrib>Fang, Zhen</creatorcontrib><creatorcontrib>Ding, Zhengming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Jiahua</au><au>Cong, Yang</au><au>Sun, Gan</au><au>Fang, Zhen</au><au>Ding, Zhengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Where and How to Transfer: Knowledge Aggregation-Induced Transferability Perception for Unsupervised Domain Adaptation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>46</volume><issue>3</issue><spage>1664</spage><epage>1681</epage><pages>1664-1681</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract><![CDATA[Unsupervised domain adaptation without accessing expensive annotation processes of target data has achieved remarkable successes in semantic segmentation. However, most existing state-of-the-art methods cannot explore whether semantic representations across domains are transferable or not, which may result in the negative transfer brought by irrelevant knowledge. To tackle this challenge, in this paper, we develop a novel K nowledge A ggregation-induced T ransferability P erception (KATP) module for unsupervised domain adaptation, which is a pioneering attempt to distinguish transferable or untransferable knowledge across domains. Specifically, the KATP module is designed to quantify which semantic knowledge across domains is transferable, by incorporating the transferability information propagation from constructed global category-wise prototypes. Based on KATP, we design a novel KATP Adaptation Network (KATPAN) to determine where and how to transfer. The KATPAN contains a transferable appearance translation module <inline-formula><tex-math notation="LaTeX">\mathcal {T}_A(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>A</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq1-3128560.gif"/> </inline-formula> and a transferable representation augmentation module <inline-formula><tex-math notation="LaTeX">\mathcal {T}_R(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>R</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq2-3128560.gif"/> </inline-formula>, where both modules construct a virtuous circle of performance promotion. <inline-formula><tex-math notation="LaTeX">\mathcal {T}_A(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>A</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq3-3128560.gif"/> </inline-formula> develops a transferability-aware information bottleneck to highlight where to adapt transferable visual characterizations and modality information; <inline-formula><tex-math notation="LaTeX">\mathcal {T}_R(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>R</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq4-3128560.gif"/> </inline-formula> explores how to augment transferable representations while abandoning untransferable information, and promotes the translation performance of <inline-formula><tex-math notation="LaTeX">\mathcal {T}_A(\cdot)</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mi>A</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mo>·</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="dong-ieq5-3128560.gif"/> </inline-formula> in return. Comprehensive experiments on several representative benchmark datasets and a medical dataset support the state-of-the-art performance of our model.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>34784271</pmid><doi>10.1109/TPAMI.2021.3128560</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1111-6909</orcidid><orcidid>https://orcid.org/0000-0003-0602-6255</orcidid><orcidid>https://orcid.org/0000-0002-5102-0189</orcidid><orcidid>https://orcid.org/0000-0001-8545-4447</orcidid><orcidid>https://orcid.org/0000-0002-6994-5278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2024-03, Vol.46 (3), p.1664-1681 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_ieee_primary_9616392 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Adaptation Adaptation models Datasets Knowledge engineering Knowledge management medical lesions diagnosis Modules Prototypes Representations Semantic segmentation Semantics State of the art Task analysis Transfer learning Uncertainty unsupervised domain adaptation Visualization |
title | Where and How to Transfer: Knowledge Aggregation-Induced Transferability Perception for Unsupervised Domain Adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Where%20and%20How%20to%20Transfer:%20Knowledge%20Aggregation-Induced%20Transferability%20Perception%20for%20Unsupervised%20Domain%20Adaptation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Dong,%20Jiahua&rft.date=2024-03-01&rft.volume=46&rft.issue=3&rft.spage=1664&rft.epage=1681&rft.pages=1664-1681&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3128560&rft_dat=%3Cproquest_RIE%3E2598542866%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923123113&rft_id=info:pmid/34784271&rft_ieee_id=9616392&rfr_iscdi=true |