Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case

We consider the problem of designing a disturbance compensator for a discrete time linear system, so as to optimize a performance index while satisfying probabilistic state and input constraints in steady-state conditions. The problem is formulated as a chance-constrained program that depends on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2022-12, Vol.67 (12), p.6322-6332
Hauptverfasser: Falsone, Alessandro, Deori, Luca, Ioli, Daniele, Garatti, Simone, Prandini, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6332
container_issue 12
container_start_page 6322
container_title IEEE transactions on automatic control
container_volume 67
creator Falsone, Alessandro
Deori, Luca
Ioli, Daniele
Garatti, Simone
Prandini, Maria
description We consider the problem of designing a disturbance compensator for a discrete time linear system, so as to optimize a performance index while satisfying probabilistic state and input constraints in steady-state conditions. The problem is formulated as a chance-constrained program that depends on the compensator parameters through the state and input stationary distributions. In this article, we focus on the Gaussian noise case and provide an analytic expression of the stationary state distribution as a function of the compensator parameters. This expression can be used in the chance-constrained program, which can then be tackled via the scenario approach. Some useful extensions of the setup are also discussed to further broaden the applicability of the approach. Performance of the proposed design methodology is shown on a building energy management problem where cyclostationary disturbances are compensated, thus providing a stochastic periodic control solution.
doi_str_mv 10.1109/TAC.2021.3127431
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9612042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9612042</ieee_id><sourcerecordid>2747615918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-3ccadbdfb97b9ee5a62f6f2d6f112eb26155b6144e2d45c0a47e75ce5cf44cef3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2demqatt1HnFIY7bJ5Dmr5gx9bWJD3svzdjw0seefy-93gfIY_AZgCsfNnOqxlnHGYp8FykcEUmkGVFwjOeXpMJY1AkJS_kLbnzfhe_UgiYEFwPoT3oPd0E1M0x2QQdkL61Poyu1p1BWvWHATuvQ9t31PYuNjofnG47bOgqvtrRzdEHPPhXuv1ButSj963u6Fff-shrj_fkxuq9x4dLnZLv98W2-khW6-VnNV8lhss0JKkxuqkbW5d5XSJmWnIrLW-kBeBYcxkvqiUIgbwRmWFa5JhnBjNjhTBo0yl5Ps8dXP87og9q14-uiytVlJJHvoQiptg5ZVzvvUOrBhcduKMCpk4yVZSpTjLVRWZEns5Ii4j_8VICZ4Knf1nlcXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747615918</pqid></control><display><type>article</type><title>Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case</title><source>IEEE Electronic Library (IEL)</source><creator>Falsone, Alessandro ; Deori, Luca ; Ioli, Daniele ; Garatti, Simone ; Prandini, Maria</creator><creatorcontrib>Falsone, Alessandro ; Deori, Luca ; Ioli, Daniele ; Garatti, Simone ; Prandini, Maria</creatorcontrib><description>We consider the problem of designing a disturbance compensator for a discrete time linear system, so as to optimize a performance index while satisfying probabilistic state and input constraints in steady-state conditions. The problem is formulated as a chance-constrained program that depends on the compensator parameters through the state and input stationary distributions. In this article, we focus on the Gaussian noise case and provide an analytic expression of the stationary state distribution as a function of the compensator parameters. This expression can be used in the chance-constrained program, which can then be tackled via the scenario approach. Some useful extensions of the setup are also discussed to further broaden the applicability of the approach. Performance of the proposed design methodology is shown on a building energy management problem where cyclostationary disturbances are compensated, thus providing a stochastic periodic control solution.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3127431</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compensators ; Constraints ; Covariance matrices ; Discrete time systems ; Disturbance compensation ; Energy management ; Gaussian noise ; Linear systems ; optimal constrained control ; Optimization ; Parameters ; Performance indices ; Probabilistic logic ; Random noise ; Stationary state ; Steady state ; stochastic linear systems</subject><ispartof>IEEE transactions on automatic control, 2022-12, Vol.67 (12), p.6322-6332</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-3ccadbdfb97b9ee5a62f6f2d6f112eb26155b6144e2d45c0a47e75ce5cf44cef3</citedby><cites>FETCH-LOGICAL-c263t-3ccadbdfb97b9ee5a62f6f2d6f112eb26155b6144e2d45c0a47e75ce5cf44cef3</cites><orcidid>0000-0001-7443-4117 ; 0000-0002-7218-3796 ; 0000-0002-2395-6828 ; 0000-0002-5451-6892 ; 0000-0002-2335-1490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9612042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9612042$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Falsone, Alessandro</creatorcontrib><creatorcontrib>Deori, Luca</creatorcontrib><creatorcontrib>Ioli, Daniele</creatorcontrib><creatorcontrib>Garatti, Simone</creatorcontrib><creatorcontrib>Prandini, Maria</creatorcontrib><title>Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We consider the problem of designing a disturbance compensator for a discrete time linear system, so as to optimize a performance index while satisfying probabilistic state and input constraints in steady-state conditions. The problem is formulated as a chance-constrained program that depends on the compensator parameters through the state and input stationary distributions. In this article, we focus on the Gaussian noise case and provide an analytic expression of the stationary state distribution as a function of the compensator parameters. This expression can be used in the chance-constrained program, which can then be tackled via the scenario approach. Some useful extensions of the setup are also discussed to further broaden the applicability of the approach. Performance of the proposed design methodology is shown on a building energy management problem where cyclostationary disturbances are compensated, thus providing a stochastic periodic control solution.</description><subject>Compensators</subject><subject>Constraints</subject><subject>Covariance matrices</subject><subject>Discrete time systems</subject><subject>Disturbance compensation</subject><subject>Energy management</subject><subject>Gaussian noise</subject><subject>Linear systems</subject><subject>optimal constrained control</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance indices</subject><subject>Probabilistic logic</subject><subject>Random noise</subject><subject>Stationary state</subject><subject>Steady state</subject><subject>stochastic linear systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2demqatt1HnFIY7bJ5Dmr5gx9bWJD3svzdjw0seefy-93gfIY_AZgCsfNnOqxlnHGYp8FykcEUmkGVFwjOeXpMJY1AkJS_kLbnzfhe_UgiYEFwPoT3oPd0E1M0x2QQdkL61Poyu1p1BWvWHATuvQ9t31PYuNjofnG47bOgqvtrRzdEHPPhXuv1ButSj963u6Fff-shrj_fkxuq9x4dLnZLv98W2-khW6-VnNV8lhss0JKkxuqkbW5d5XSJmWnIrLW-kBeBYcxkvqiUIgbwRmWFa5JhnBjNjhTBo0yl5Ps8dXP87og9q14-uiytVlJJHvoQiptg5ZVzvvUOrBhcduKMCpk4yVZSpTjLVRWZEns5Ii4j_8VICZ4Knf1nlcXg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Falsone, Alessandro</creator><creator>Deori, Luca</creator><creator>Ioli, Daniele</creator><creator>Garatti, Simone</creator><creator>Prandini, Maria</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7443-4117</orcidid><orcidid>https://orcid.org/0000-0002-7218-3796</orcidid><orcidid>https://orcid.org/0000-0002-2395-6828</orcidid><orcidid>https://orcid.org/0000-0002-5451-6892</orcidid><orcidid>https://orcid.org/0000-0002-2335-1490</orcidid></search><sort><creationdate>20221201</creationdate><title>Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case</title><author>Falsone, Alessandro ; Deori, Luca ; Ioli, Daniele ; Garatti, Simone ; Prandini, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-3ccadbdfb97b9ee5a62f6f2d6f112eb26155b6144e2d45c0a47e75ce5cf44cef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Compensators</topic><topic>Constraints</topic><topic>Covariance matrices</topic><topic>Discrete time systems</topic><topic>Disturbance compensation</topic><topic>Energy management</topic><topic>Gaussian noise</topic><topic>Linear systems</topic><topic>optimal constrained control</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance indices</topic><topic>Probabilistic logic</topic><topic>Random noise</topic><topic>Stationary state</topic><topic>Steady state</topic><topic>stochastic linear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falsone, Alessandro</creatorcontrib><creatorcontrib>Deori, Luca</creatorcontrib><creatorcontrib>Ioli, Daniele</creatorcontrib><creatorcontrib>Garatti, Simone</creatorcontrib><creatorcontrib>Prandini, Maria</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Falsone, Alessandro</au><au>Deori, Luca</au><au>Ioli, Daniele</au><au>Garatti, Simone</au><au>Prandini, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>67</volume><issue>12</issue><spage>6322</spage><epage>6332</epage><pages>6322-6332</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We consider the problem of designing a disturbance compensator for a discrete time linear system, so as to optimize a performance index while satisfying probabilistic state and input constraints in steady-state conditions. The problem is formulated as a chance-constrained program that depends on the compensator parameters through the state and input stationary distributions. In this article, we focus on the Gaussian noise case and provide an analytic expression of the stationary state distribution as a function of the compensator parameters. This expression can be used in the chance-constrained program, which can then be tackled via the scenario approach. Some useful extensions of the setup are also discussed to further broaden the applicability of the approach. Performance of the proposed design methodology is shown on a building energy management problem where cyclostationary disturbances are compensated, thus providing a stochastic periodic control solution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3127431</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7443-4117</orcidid><orcidid>https://orcid.org/0000-0002-7218-3796</orcidid><orcidid>https://orcid.org/0000-0002-2395-6828</orcidid><orcidid>https://orcid.org/0000-0002-5451-6892</orcidid><orcidid>https://orcid.org/0000-0002-2335-1490</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2022-12, Vol.67 (12), p.6322-6332
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_9612042
source IEEE Electronic Library (IEL)
subjects Compensators
Constraints
Covariance matrices
Discrete time systems
Disturbance compensation
Energy management
Gaussian noise
Linear systems
optimal constrained control
Optimization
Parameters
Performance indices
Probabilistic logic
Random noise
Stationary state
Steady state
stochastic linear systems
title Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Steady-State%20Disturbance%20Compensation%20for%20Constrained%20Linear%20Systems:%20The%20Gaussian%20Noise%20Case&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Falsone,%20Alessandro&rft.date=2022-12-01&rft.volume=67&rft.issue=12&rft.spage=6322&rft.epage=6332&rft.pages=6322-6332&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3127431&rft_dat=%3Cproquest_RIE%3E2747615918%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747615918&rft_id=info:pmid/&rft_ieee_id=9612042&rfr_iscdi=true