Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case
We consider the problem of designing a disturbance compensator for a discrete time linear system, so as to optimize a performance index while satisfying probabilistic state and input constraints in steady-state conditions. The problem is formulated as a chance-constrained program that depends on the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2022-12, Vol.67 (12), p.6322-6332 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6332 |
---|---|
container_issue | 12 |
container_start_page | 6322 |
container_title | IEEE transactions on automatic control |
container_volume | 67 |
creator | Falsone, Alessandro Deori, Luca Ioli, Daniele Garatti, Simone Prandini, Maria |
description | We consider the problem of designing a disturbance compensator for a discrete time linear system, so as to optimize a performance index while satisfying probabilistic state and input constraints in steady-state conditions. The problem is formulated as a chance-constrained program that depends on the compensator parameters through the state and input stationary distributions. In this article, we focus on the Gaussian noise case and provide an analytic expression of the stationary state distribution as a function of the compensator parameters. This expression can be used in the chance-constrained program, which can then be tackled via the scenario approach. Some useful extensions of the setup are also discussed to further broaden the applicability of the approach. Performance of the proposed design methodology is shown on a building energy management problem where cyclostationary disturbances are compensated, thus providing a stochastic periodic control solution. |
doi_str_mv | 10.1109/TAC.2021.3127431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9612042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9612042</ieee_id><sourcerecordid>2747615918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-3ccadbdfb97b9ee5a62f6f2d6f112eb26155b6144e2d45c0a47e75ce5cf44cef3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2demqatt1HnFIY7bJ5Dmr5gx9bWJD3svzdjw0seefy-93gfIY_AZgCsfNnOqxlnHGYp8FykcEUmkGVFwjOeXpMJY1AkJS_kLbnzfhe_UgiYEFwPoT3oPd0E1M0x2QQdkL61Poyu1p1BWvWHATuvQ9t31PYuNjofnG47bOgqvtrRzdEHPPhXuv1ButSj963u6Fff-shrj_fkxuq9x4dLnZLv98W2-khW6-VnNV8lhss0JKkxuqkbW5d5XSJmWnIrLW-kBeBYcxkvqiUIgbwRmWFa5JhnBjNjhTBo0yl5Ps8dXP87og9q14-uiytVlJJHvoQiptg5ZVzvvUOrBhcduKMCpk4yVZSpTjLVRWZEns5Ii4j_8VICZ4Knf1nlcXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747615918</pqid></control><display><type>article</type><title>Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case</title><source>IEEE Electronic Library (IEL)</source><creator>Falsone, Alessandro ; Deori, Luca ; Ioli, Daniele ; Garatti, Simone ; Prandini, Maria</creator><creatorcontrib>Falsone, Alessandro ; Deori, Luca ; Ioli, Daniele ; Garatti, Simone ; Prandini, Maria</creatorcontrib><description>We consider the problem of designing a disturbance compensator for a discrete time linear system, so as to optimize a performance index while satisfying probabilistic state and input constraints in steady-state conditions. The problem is formulated as a chance-constrained program that depends on the compensator parameters through the state and input stationary distributions. In this article, we focus on the Gaussian noise case and provide an analytic expression of the stationary state distribution as a function of the compensator parameters. This expression can be used in the chance-constrained program, which can then be tackled via the scenario approach. Some useful extensions of the setup are also discussed to further broaden the applicability of the approach. Performance of the proposed design methodology is shown on a building energy management problem where cyclostationary disturbances are compensated, thus providing a stochastic periodic control solution.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3127431</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compensators ; Constraints ; Covariance matrices ; Discrete time systems ; Disturbance compensation ; Energy management ; Gaussian noise ; Linear systems ; optimal constrained control ; Optimization ; Parameters ; Performance indices ; Probabilistic logic ; Random noise ; Stationary state ; Steady state ; stochastic linear systems</subject><ispartof>IEEE transactions on automatic control, 2022-12, Vol.67 (12), p.6322-6332</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-3ccadbdfb97b9ee5a62f6f2d6f112eb26155b6144e2d45c0a47e75ce5cf44cef3</citedby><cites>FETCH-LOGICAL-c263t-3ccadbdfb97b9ee5a62f6f2d6f112eb26155b6144e2d45c0a47e75ce5cf44cef3</cites><orcidid>0000-0001-7443-4117 ; 0000-0002-7218-3796 ; 0000-0002-2395-6828 ; 0000-0002-5451-6892 ; 0000-0002-2335-1490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9612042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9612042$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Falsone, Alessandro</creatorcontrib><creatorcontrib>Deori, Luca</creatorcontrib><creatorcontrib>Ioli, Daniele</creatorcontrib><creatorcontrib>Garatti, Simone</creatorcontrib><creatorcontrib>Prandini, Maria</creatorcontrib><title>Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We consider the problem of designing a disturbance compensator for a discrete time linear system, so as to optimize a performance index while satisfying probabilistic state and input constraints in steady-state conditions. The problem is formulated as a chance-constrained program that depends on the compensator parameters through the state and input stationary distributions. In this article, we focus on the Gaussian noise case and provide an analytic expression of the stationary state distribution as a function of the compensator parameters. This expression can be used in the chance-constrained program, which can then be tackled via the scenario approach. Some useful extensions of the setup are also discussed to further broaden the applicability of the approach. Performance of the proposed design methodology is shown on a building energy management problem where cyclostationary disturbances are compensated, thus providing a stochastic periodic control solution.</description><subject>Compensators</subject><subject>Constraints</subject><subject>Covariance matrices</subject><subject>Discrete time systems</subject><subject>Disturbance compensation</subject><subject>Energy management</subject><subject>Gaussian noise</subject><subject>Linear systems</subject><subject>optimal constrained control</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance indices</subject><subject>Probabilistic logic</subject><subject>Random noise</subject><subject>Stationary state</subject><subject>Steady state</subject><subject>stochastic linear systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2demqatt1HnFIY7bJ5Dmr5gx9bWJD3svzdjw0seefy-93gfIY_AZgCsfNnOqxlnHGYp8FykcEUmkGVFwjOeXpMJY1AkJS_kLbnzfhe_UgiYEFwPoT3oPd0E1M0x2QQdkL61Poyu1p1BWvWHATuvQ9t31PYuNjofnG47bOgqvtrRzdEHPPhXuv1ButSj963u6Fff-shrj_fkxuq9x4dLnZLv98W2-khW6-VnNV8lhss0JKkxuqkbW5d5XSJmWnIrLW-kBeBYcxkvqiUIgbwRmWFa5JhnBjNjhTBo0yl5Ps8dXP87og9q14-uiytVlJJHvoQiptg5ZVzvvUOrBhcduKMCpk4yVZSpTjLVRWZEns5Ii4j_8VICZ4Knf1nlcXg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Falsone, Alessandro</creator><creator>Deori, Luca</creator><creator>Ioli, Daniele</creator><creator>Garatti, Simone</creator><creator>Prandini, Maria</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7443-4117</orcidid><orcidid>https://orcid.org/0000-0002-7218-3796</orcidid><orcidid>https://orcid.org/0000-0002-2395-6828</orcidid><orcidid>https://orcid.org/0000-0002-5451-6892</orcidid><orcidid>https://orcid.org/0000-0002-2335-1490</orcidid></search><sort><creationdate>20221201</creationdate><title>Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case</title><author>Falsone, Alessandro ; Deori, Luca ; Ioli, Daniele ; Garatti, Simone ; Prandini, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-3ccadbdfb97b9ee5a62f6f2d6f112eb26155b6144e2d45c0a47e75ce5cf44cef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Compensators</topic><topic>Constraints</topic><topic>Covariance matrices</topic><topic>Discrete time systems</topic><topic>Disturbance compensation</topic><topic>Energy management</topic><topic>Gaussian noise</topic><topic>Linear systems</topic><topic>optimal constrained control</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance indices</topic><topic>Probabilistic logic</topic><topic>Random noise</topic><topic>Stationary state</topic><topic>Steady state</topic><topic>stochastic linear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falsone, Alessandro</creatorcontrib><creatorcontrib>Deori, Luca</creatorcontrib><creatorcontrib>Ioli, Daniele</creatorcontrib><creatorcontrib>Garatti, Simone</creatorcontrib><creatorcontrib>Prandini, Maria</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Falsone, Alessandro</au><au>Deori, Luca</au><au>Ioli, Daniele</au><au>Garatti, Simone</au><au>Prandini, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>67</volume><issue>12</issue><spage>6322</spage><epage>6332</epage><pages>6322-6332</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We consider the problem of designing a disturbance compensator for a discrete time linear system, so as to optimize a performance index while satisfying probabilistic state and input constraints in steady-state conditions. The problem is formulated as a chance-constrained program that depends on the compensator parameters through the state and input stationary distributions. In this article, we focus on the Gaussian noise case and provide an analytic expression of the stationary state distribution as a function of the compensator parameters. This expression can be used in the chance-constrained program, which can then be tackled via the scenario approach. Some useful extensions of the setup are also discussed to further broaden the applicability of the approach. Performance of the proposed design methodology is shown on a building energy management problem where cyclostationary disturbances are compensated, thus providing a stochastic periodic control solution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3127431</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7443-4117</orcidid><orcidid>https://orcid.org/0000-0002-7218-3796</orcidid><orcidid>https://orcid.org/0000-0002-2395-6828</orcidid><orcidid>https://orcid.org/0000-0002-5451-6892</orcidid><orcidid>https://orcid.org/0000-0002-2335-1490</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2022-12, Vol.67 (12), p.6322-6332 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_9612042 |
source | IEEE Electronic Library (IEL) |
subjects | Compensators Constraints Covariance matrices Discrete time systems Disturbance compensation Energy management Gaussian noise Linear systems optimal constrained control Optimization Parameters Performance indices Probabilistic logic Random noise Stationary state Steady state stochastic linear systems |
title | Optimal Steady-State Disturbance Compensation for Constrained Linear Systems: The Gaussian Noise Case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Steady-State%20Disturbance%20Compensation%20for%20Constrained%20Linear%20Systems:%20The%20Gaussian%20Noise%20Case&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Falsone,%20Alessandro&rft.date=2022-12-01&rft.volume=67&rft.issue=12&rft.spage=6322&rft.epage=6332&rft.pages=6322-6332&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3127431&rft_dat=%3Cproquest_RIE%3E2747615918%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747615918&rft_id=info:pmid/&rft_ieee_id=9612042&rfr_iscdi=true |