Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation

Computing in the network (COIN) exploits the sparce computing power of network nodes to offload applications' computations. This paradigm benefits computation-demanding applications, such as source separation for acoustic anomaly detection. However, wider adoption of COIN has not occurred due t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2021-09, Vol.35 (5), p.21-27
Hauptverfasser: Wu, Huanzhuo, Xiang, Zuo, Nguyen, Giang T., Shen, Yunbin, Fitzek, Frank H.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 5
container_start_page 21
container_title IEEE network
container_volume 35
creator Wu, Huanzhuo
Xiang, Zuo
Nguyen, Giang T.
Shen, Yunbin
Fitzek, Frank H.P.
description Computing in the network (COIN) exploits the sparce computing power of network nodes to offload applications' computations. This paradigm benefits computation-demanding applications, such as source separation for acoustic anomaly detection. However, wider adoption of COIN has not occurred due to intertwined challenges. The monolithic design of the source separation algorithms and the lack of a flexible transport layer in COIN hinders its exploitation. This article presents network joint independent component analysis (NJICA), leveraging COIN to recover original acoustic sources from a mixture of raw sensory signals. NJICA redesigns the monolithic algorithm for source separation into a distributed one to unleash the offloading capability to an arbitrary number of network nodes. Furthermore, NJICA develops a message-based transport layer that allows aggregating application data at network nodes and differentiating message types. Extensive evaluations of the practical implementation of NJICA using a realistic dataset shows that NJICA significantly reduces both the computation and service latencies.
doi_str_mv 10.1109/MNET.011.2100060
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9606828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606828</ieee_id><sourcerecordid>2595720163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-8ced6e6f2601c2cfeb958ac3b37404498dce00f35ca70aa0c75a490331a843433</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqWwI7FEYk55tmPHYYNSoFI_hhYJJst1nlFKGwcnpeLfk6gV01vOve_qEHJNYUApZHfT2Wg5AEoHjAKAhBPSo0KomAr5fkp6oDKIFSTJObmo6zUATQRnPfIx9Ntq1xTlZzRFbOpohs3eh6_7aDgfz-KHvQkYzZ3beJN3kPMhejKNicdlg2Vd_GD0uCnKPFr4XbAYLbAywTSFLy_JmTObGq-Ot0_enkfL4Ws8mb-Mhw-T2DJGm1hZzCVKxyRQy6zDVSaUsXzF06Sdm6ncIoDjwpoUjAGbCpNkwDk1KuEJ531ye-itgv_eYd3odTulbF9qJjKRMqCyo-BA2eDrOqDTVSi2JvxqCroTqDuBuhWojwLbyM0hUiDiP55JkIop_gcE8Wte</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595720163</pqid></control><display><type>article</type><title>Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Huanzhuo ; Xiang, Zuo ; Nguyen, Giang T. ; Shen, Yunbin ; Fitzek, Frank H.P.</creator><creatorcontrib>Wu, Huanzhuo ; Xiang, Zuo ; Nguyen, Giang T. ; Shen, Yunbin ; Fitzek, Frank H.P.</creatorcontrib><description>Computing in the network (COIN) exploits the sparce computing power of network nodes to offload applications' computations. This paradigm benefits computation-demanding applications, such as source separation for acoustic anomaly detection. However, wider adoption of COIN has not occurred due to intertwined challenges. The monolithic design of the source separation algorithms and the lack of a flexible transport layer in COIN hinders its exploitation. This article presents network joint independent component analysis (NJICA), leveraging COIN to recover original acoustic sources from a mixture of raw sensory signals. NJICA redesigns the monolithic algorithm for source separation into a distributed one to unleash the offloading capability to an arbitrary number of network nodes. Furthermore, NJICA develops a message-based transport layer that allows aggregating application data at network nodes and differentiating message types. Extensive evaluations of the practical implementation of NJICA using a realistic dataset shows that NJICA significantly reduces both the computation and service latencies.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.011.2100060</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustics ; Algorithms ; Anomalies ; Anomaly detection ; Blind source separation ; Cloud computing ; Computation ; Edge computing ; Independent component analysis ; Nodes ; Separation ; Signal processing ; Sound sources</subject><ispartof>IEEE network, 2021-09, Vol.35 (5), p.21-27</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-8ced6e6f2601c2cfeb958ac3b37404498dce00f35ca70aa0c75a490331a843433</citedby><cites>FETCH-LOGICAL-c221t-8ced6e6f2601c2cfeb958ac3b37404498dce00f35ca70aa0c75a490331a843433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9606828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Huanzhuo</creatorcontrib><creatorcontrib>Xiang, Zuo</creatorcontrib><creatorcontrib>Nguyen, Giang T.</creatorcontrib><creatorcontrib>Shen, Yunbin</creatorcontrib><creatorcontrib>Fitzek, Frank H.P.</creatorcontrib><title>Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>Computing in the network (COIN) exploits the sparce computing power of network nodes to offload applications' computations. This paradigm benefits computation-demanding applications, such as source separation for acoustic anomaly detection. However, wider adoption of COIN has not occurred due to intertwined challenges. The monolithic design of the source separation algorithms and the lack of a flexible transport layer in COIN hinders its exploitation. This article presents network joint independent component analysis (NJICA), leveraging COIN to recover original acoustic sources from a mixture of raw sensory signals. NJICA redesigns the monolithic algorithm for source separation into a distributed one to unleash the offloading capability to an arbitrary number of network nodes. Furthermore, NJICA develops a message-based transport layer that allows aggregating application data at network nodes and differentiating message types. Extensive evaluations of the practical implementation of NJICA using a realistic dataset shows that NJICA significantly reduces both the computation and service latencies.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Blind source separation</subject><subject>Cloud computing</subject><subject>Computation</subject><subject>Edge computing</subject><subject>Independent component analysis</subject><subject>Nodes</subject><subject>Separation</subject><subject>Signal processing</subject><subject>Sound sources</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAURS0EEqWwI7FEYk55tmPHYYNSoFI_hhYJJst1nlFKGwcnpeLfk6gV01vOve_qEHJNYUApZHfT2Wg5AEoHjAKAhBPSo0KomAr5fkp6oDKIFSTJObmo6zUATQRnPfIx9Ntq1xTlZzRFbOpohs3eh6_7aDgfz-KHvQkYzZ3beJN3kPMhejKNicdlg2Vd_GD0uCnKPFr4XbAYLbAywTSFLy_JmTObGq-Ot0_enkfL4Ws8mb-Mhw-T2DJGm1hZzCVKxyRQy6zDVSaUsXzF06Sdm6ncIoDjwpoUjAGbCpNkwDk1KuEJ531ye-itgv_eYd3odTulbF9qJjKRMqCyo-BA2eDrOqDTVSi2JvxqCroTqDuBuhWojwLbyM0hUiDiP55JkIop_gcE8Wte</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Wu, Huanzhuo</creator><creator>Xiang, Zuo</creator><creator>Nguyen, Giang T.</creator><creator>Shen, Yunbin</creator><creator>Fitzek, Frank H.P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210901</creationdate><title>Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation</title><author>Wu, Huanzhuo ; Xiang, Zuo ; Nguyen, Giang T. ; Shen, Yunbin ; Fitzek, Frank H.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-8ced6e6f2601c2cfeb958ac3b37404498dce00f35ca70aa0c75a490331a843433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Blind source separation</topic><topic>Cloud computing</topic><topic>Computation</topic><topic>Edge computing</topic><topic>Independent component analysis</topic><topic>Nodes</topic><topic>Separation</topic><topic>Signal processing</topic><topic>Sound sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Huanzhuo</creatorcontrib><creatorcontrib>Xiang, Zuo</creatorcontrib><creatorcontrib>Nguyen, Giang T.</creatorcontrib><creatorcontrib>Shen, Yunbin</creatorcontrib><creatorcontrib>Fitzek, Frank H.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Huanzhuo</au><au>Xiang, Zuo</au><au>Nguyen, Giang T.</au><au>Shen, Yunbin</au><au>Fitzek, Frank H.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>35</volume><issue>5</issue><spage>21</spage><epage>27</epage><pages>21-27</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>Computing in the network (COIN) exploits the sparce computing power of network nodes to offload applications' computations. This paradigm benefits computation-demanding applications, such as source separation for acoustic anomaly detection. However, wider adoption of COIN has not occurred due to intertwined challenges. The monolithic design of the source separation algorithms and the lack of a flexible transport layer in COIN hinders its exploitation. This article presents network joint independent component analysis (NJICA), leveraging COIN to recover original acoustic sources from a mixture of raw sensory signals. NJICA redesigns the monolithic algorithm for source separation into a distributed one to unleash the offloading capability to an arbitrary number of network nodes. Furthermore, NJICA develops a message-based transport layer that allows aggregating application data at network nodes and differentiating message types. Extensive evaluations of the practical implementation of NJICA using a realistic dataset shows that NJICA significantly reduces both the computation and service latencies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MNET.011.2100060</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0890-8044
ispartof IEEE network, 2021-09, Vol.35 (5), p.21-27
issn 0890-8044
1558-156X
language eng
recordid cdi_ieee_primary_9606828
source IEEE Electronic Library (IEL)
subjects Acoustics
Algorithms
Anomalies
Anomaly detection
Blind source separation
Cloud computing
Computation
Edge computing
Independent component analysis
Nodes
Separation
Signal processing
Sound sources
title Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20Meets%20Network:%20COIN-Aware%20Offloading%20for%20Data-Intensive%20Blind%20Source%20Separation&rft.jtitle=IEEE%20network&rft.au=Wu,%20Huanzhuo&rft.date=2021-09-01&rft.volume=35&rft.issue=5&rft.spage=21&rft.epage=27&rft.pages=21-27&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.011.2100060&rft_dat=%3Cproquest_RIE%3E2595720163%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595720163&rft_id=info:pmid/&rft_ieee_id=9606828&rfr_iscdi=true