Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation
Computing in the network (COIN) exploits the sparce computing power of network nodes to offload applications' computations. This paradigm benefits computation-demanding applications, such as source separation for acoustic anomaly detection. However, wider adoption of COIN has not occurred due t...
Gespeichert in:
Veröffentlicht in: | IEEE network 2021-09, Vol.35 (5), p.21-27 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 5 |
container_start_page | 21 |
container_title | IEEE network |
container_volume | 35 |
creator | Wu, Huanzhuo Xiang, Zuo Nguyen, Giang T. Shen, Yunbin Fitzek, Frank H.P. |
description | Computing in the network (COIN) exploits the sparce computing power of network nodes to offload applications' computations. This paradigm benefits computation-demanding applications, such as source separation for acoustic anomaly detection. However, wider adoption of COIN has not occurred due to intertwined challenges. The monolithic design of the source separation algorithms and the lack of a flexible transport layer in COIN hinders its exploitation. This article presents network joint independent component analysis (NJICA), leveraging COIN to recover original acoustic sources from a mixture of raw sensory signals. NJICA redesigns the monolithic algorithm for source separation into a distributed one to unleash the offloading capability to an arbitrary number of network nodes. Furthermore, NJICA develops a message-based transport layer that allows aggregating application data at network nodes and differentiating message types. Extensive evaluations of the practical implementation of NJICA using a realistic dataset shows that NJICA significantly reduces both the computation and service latencies. |
doi_str_mv | 10.1109/MNET.011.2100060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9606828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606828</ieee_id><sourcerecordid>2595720163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-8ced6e6f2601c2cfeb958ac3b37404498dce00f35ca70aa0c75a490331a843433</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqWwI7FEYk55tmPHYYNSoFI_hhYJJst1nlFKGwcnpeLfk6gV01vOve_qEHJNYUApZHfT2Wg5AEoHjAKAhBPSo0KomAr5fkp6oDKIFSTJObmo6zUATQRnPfIx9Ntq1xTlZzRFbOpohs3eh6_7aDgfz-KHvQkYzZ3beJN3kPMhejKNicdlg2Vd_GD0uCnKPFr4XbAYLbAywTSFLy_JmTObGq-Ot0_enkfL4Ws8mb-Mhw-T2DJGm1hZzCVKxyRQy6zDVSaUsXzF06Sdm6ncIoDjwpoUjAGbCpNkwDk1KuEJ531ye-itgv_eYd3odTulbF9qJjKRMqCyo-BA2eDrOqDTVSi2JvxqCroTqDuBuhWojwLbyM0hUiDiP55JkIop_gcE8Wte</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595720163</pqid></control><display><type>article</type><title>Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Huanzhuo ; Xiang, Zuo ; Nguyen, Giang T. ; Shen, Yunbin ; Fitzek, Frank H.P.</creator><creatorcontrib>Wu, Huanzhuo ; Xiang, Zuo ; Nguyen, Giang T. ; Shen, Yunbin ; Fitzek, Frank H.P.</creatorcontrib><description>Computing in the network (COIN) exploits the sparce computing power of network nodes to offload applications' computations. This paradigm benefits computation-demanding applications, such as source separation for acoustic anomaly detection. However, wider adoption of COIN has not occurred due to intertwined challenges. The monolithic design of the source separation algorithms and the lack of a flexible transport layer in COIN hinders its exploitation. This article presents network joint independent component analysis (NJICA), leveraging COIN to recover original acoustic sources from a mixture of raw sensory signals. NJICA redesigns the monolithic algorithm for source separation into a distributed one to unleash the offloading capability to an arbitrary number of network nodes. Furthermore, NJICA develops a message-based transport layer that allows aggregating application data at network nodes and differentiating message types. Extensive evaluations of the practical implementation of NJICA using a realistic dataset shows that NJICA significantly reduces both the computation and service latencies.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.011.2100060</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustics ; Algorithms ; Anomalies ; Anomaly detection ; Blind source separation ; Cloud computing ; Computation ; Edge computing ; Independent component analysis ; Nodes ; Separation ; Signal processing ; Sound sources</subject><ispartof>IEEE network, 2021-09, Vol.35 (5), p.21-27</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-8ced6e6f2601c2cfeb958ac3b37404498dce00f35ca70aa0c75a490331a843433</citedby><cites>FETCH-LOGICAL-c221t-8ced6e6f2601c2cfeb958ac3b37404498dce00f35ca70aa0c75a490331a843433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9606828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Huanzhuo</creatorcontrib><creatorcontrib>Xiang, Zuo</creatorcontrib><creatorcontrib>Nguyen, Giang T.</creatorcontrib><creatorcontrib>Shen, Yunbin</creatorcontrib><creatorcontrib>Fitzek, Frank H.P.</creatorcontrib><title>Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>Computing in the network (COIN) exploits the sparce computing power of network nodes to offload applications' computations. This paradigm benefits computation-demanding applications, such as source separation for acoustic anomaly detection. However, wider adoption of COIN has not occurred due to intertwined challenges. The monolithic design of the source separation algorithms and the lack of a flexible transport layer in COIN hinders its exploitation. This article presents network joint independent component analysis (NJICA), leveraging COIN to recover original acoustic sources from a mixture of raw sensory signals. NJICA redesigns the monolithic algorithm for source separation into a distributed one to unleash the offloading capability to an arbitrary number of network nodes. Furthermore, NJICA develops a message-based transport layer that allows aggregating application data at network nodes and differentiating message types. Extensive evaluations of the practical implementation of NJICA using a realistic dataset shows that NJICA significantly reduces both the computation and service latencies.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Blind source separation</subject><subject>Cloud computing</subject><subject>Computation</subject><subject>Edge computing</subject><subject>Independent component analysis</subject><subject>Nodes</subject><subject>Separation</subject><subject>Signal processing</subject><subject>Sound sources</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAURS0EEqWwI7FEYk55tmPHYYNSoFI_hhYJJst1nlFKGwcnpeLfk6gV01vOve_qEHJNYUApZHfT2Wg5AEoHjAKAhBPSo0KomAr5fkp6oDKIFSTJObmo6zUATQRnPfIx9Ntq1xTlZzRFbOpohs3eh6_7aDgfz-KHvQkYzZ3beJN3kPMhejKNicdlg2Vd_GD0uCnKPFr4XbAYLbAywTSFLy_JmTObGq-Ot0_enkfL4Ws8mb-Mhw-T2DJGm1hZzCVKxyRQy6zDVSaUsXzF06Sdm6ncIoDjwpoUjAGbCpNkwDk1KuEJ531ye-itgv_eYd3odTulbF9qJjKRMqCyo-BA2eDrOqDTVSi2JvxqCroTqDuBuhWojwLbyM0hUiDiP55JkIop_gcE8Wte</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Wu, Huanzhuo</creator><creator>Xiang, Zuo</creator><creator>Nguyen, Giang T.</creator><creator>Shen, Yunbin</creator><creator>Fitzek, Frank H.P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210901</creationdate><title>Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation</title><author>Wu, Huanzhuo ; Xiang, Zuo ; Nguyen, Giang T. ; Shen, Yunbin ; Fitzek, Frank H.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-8ced6e6f2601c2cfeb958ac3b37404498dce00f35ca70aa0c75a490331a843433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Blind source separation</topic><topic>Cloud computing</topic><topic>Computation</topic><topic>Edge computing</topic><topic>Independent component analysis</topic><topic>Nodes</topic><topic>Separation</topic><topic>Signal processing</topic><topic>Sound sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Huanzhuo</creatorcontrib><creatorcontrib>Xiang, Zuo</creatorcontrib><creatorcontrib>Nguyen, Giang T.</creatorcontrib><creatorcontrib>Shen, Yunbin</creatorcontrib><creatorcontrib>Fitzek, Frank H.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Huanzhuo</au><au>Xiang, Zuo</au><au>Nguyen, Giang T.</au><au>Shen, Yunbin</au><au>Fitzek, Frank H.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>35</volume><issue>5</issue><spage>21</spage><epage>27</epage><pages>21-27</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>Computing in the network (COIN) exploits the sparce computing power of network nodes to offload applications' computations. This paradigm benefits computation-demanding applications, such as source separation for acoustic anomaly detection. However, wider adoption of COIN has not occurred due to intertwined challenges. The monolithic design of the source separation algorithms and the lack of a flexible transport layer in COIN hinders its exploitation. This article presents network joint independent component analysis (NJICA), leveraging COIN to recover original acoustic sources from a mixture of raw sensory signals. NJICA redesigns the monolithic algorithm for source separation into a distributed one to unleash the offloading capability to an arbitrary number of network nodes. Furthermore, NJICA develops a message-based transport layer that allows aggregating application data at network nodes and differentiating message types. Extensive evaluations of the practical implementation of NJICA using a realistic dataset shows that NJICA significantly reduces both the computation and service latencies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MNET.011.2100060</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0890-8044 |
ispartof | IEEE network, 2021-09, Vol.35 (5), p.21-27 |
issn | 0890-8044 1558-156X |
language | eng |
recordid | cdi_ieee_primary_9606828 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Algorithms Anomalies Anomaly detection Blind source separation Cloud computing Computation Edge computing Independent component analysis Nodes Separation Signal processing Sound sources |
title | Computing Meets Network: COIN-Aware Offloading for Data-Intensive Blind Source Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20Meets%20Network:%20COIN-Aware%20Offloading%20for%20Data-Intensive%20Blind%20Source%20Separation&rft.jtitle=IEEE%20network&rft.au=Wu,%20Huanzhuo&rft.date=2021-09-01&rft.volume=35&rft.issue=5&rft.spage=21&rft.epage=27&rft.pages=21-27&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.011.2100060&rft_dat=%3Cproquest_RIE%3E2595720163%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595720163&rft_id=info:pmid/&rft_ieee_id=9606828&rfr_iscdi=true |