Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems

In this paper, a tensor-based joint channel parameter estimation and information symbol detection scheme is developed for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communication systems. At the base station (BS), the information symbols are encoded according to the Khatr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2021, Vol.69, p.6251-6266
Hauptverfasser: Du, Jianhe, Han, Meng, Chen, Yuanzhi, Jin, Libiao, Gao, Feifei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6266
container_issue
container_start_page 6251
container_title IEEE transactions on signal processing
container_volume 69
creator Du, Jianhe
Han, Meng
Chen, Yuanzhi
Jin, Libiao
Gao, Feifei
description In this paper, a tensor-based joint channel parameter estimation and information symbol detection scheme is developed for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communication systems. At the base station (BS), the information symbols are encoded according to the Khatri-Rao space-time (KRST) method and transmitted through time-varying channels. The received signals at the mobile station (MS) are constructed into a nested complex-valued parallel factor (PARAFAC) model, which contains an outer model and an inner model, respectively. With outer model, we estimate the compound channel matrix and detect the information symbols considering the sparse scattering nature of mmWave channels. With inner model, we extract physical parameters, including angles of arrival/departure (AoAs/AoDs), Doppler shifts and complex path gains from the estimated compound channel matrix. These physical parameters can be used to significantly reduce feedback overhead. A tricky way here is that we convert complex inner-submodel into a real one such that the computational complexity is reduced. Compared with existing schemes, the proposed one improves the estimation accuracy with low computational complexity, and is applicable for both uniform linear arrays (ULAs) and uniform planar arrays (UPAs). Simulation results demonstrate the effectiveness of the proposed joint channel estimation and information symbol detection scheme.
doi_str_mv 10.1109/TSP.2021.3125607
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9606606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606606</ieee_id><sourcerecordid>2605708568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d2c99050ea3ce2d7428fe5aeeb774cb415c50f70d372cf880f9d3d855af77b2e3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8BnzsvadO0jzqnTjYmrP54C1l6mR1rq0kn7L83c0M4-B7H93vHfQi5ZDBgDPKbYv4y4MDZIGZcpCCPSI_lCYsgkelx6EHEkcjkxyk5834FwJIkT3tkWWDjWxfdaY8lfW6rpqPDT900uKYj31W17qq2obop6XxbL9o1vccOzd_Qto4WVY3Rm3bbqlnSun7XP0in2vtqp-PpLKR8h7U_JydWrz1eHLRPXh9GxfApmswex8PbSWR4zrqo5CbPQQDq2CAvZcIzi0IjLqRMzCJhwgiwEspYcmOzDGxexmUmhLZSLjjGfXK93_vl2u8N-k6t2o1rwknFUxASMpFmwQV7l3Gt9w6t-nLhVbdVDNQOpwo41Q6nOuAMkat9pELEf3ueQhoq_gWrt3Fm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605708568</pqid></control><display><type>article</type><title>Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Du, Jianhe ; Han, Meng ; Chen, Yuanzhi ; Jin, Libiao ; Gao, Feifei</creator><creatorcontrib>Du, Jianhe ; Han, Meng ; Chen, Yuanzhi ; Jin, Libiao ; Gao, Feifei</creatorcontrib><description>In this paper, a tensor-based joint channel parameter estimation and information symbol detection scheme is developed for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communication systems. At the base station (BS), the information symbols are encoded according to the Khatri-Rao space-time (KRST) method and transmitted through time-varying channels. The received signals at the mobile station (MS) are constructed into a nested complex-valued parallel factor (PARAFAC) model, which contains an outer model and an inner model, respectively. With outer model, we estimate the compound channel matrix and detect the information symbols considering the sparse scattering nature of mmWave channels. With inner model, we extract physical parameters, including angles of arrival/departure (AoAs/AoDs), Doppler shifts and complex path gains from the estimated compound channel matrix. These physical parameters can be used to significantly reduce feedback overhead. A tricky way here is that we convert complex inner-submodel into a real one such that the computational complexity is reduced. Compared with existing schemes, the proposed one improves the estimation accuracy with low computational complexity, and is applicable for both uniform linear arrays (ULAs) and uniform planar arrays (UPAs). Simulation results demonstrate the effectiveness of the proposed joint channel estimation and information symbol detection scheme.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2021.3125607</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel estimation ; Communications systems ; Complexity ; Compound channels ; Encoding ; Estimation ; joint estimation and detection ; Linear arrays ; Massive MIMO ; Mathematical models ; Matrices (mathematics) ; Millimeter waves ; MIMO communication ; mmWave ; Parameter estimation ; Physical properties ; Symbols ; Tensor ; Tensors ; time-varying channels ; Time-varying systems ; Transmission line matrix methods</subject><ispartof>IEEE transactions on signal processing, 2021, Vol.69, p.6251-6266</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d2c99050ea3ce2d7428fe5aeeb774cb415c50f70d372cf880f9d3d855af77b2e3</citedby><cites>FETCH-LOGICAL-c291t-d2c99050ea3ce2d7428fe5aeeb774cb415c50f70d372cf880f9d3d855af77b2e3</cites><orcidid>0000-0002-7538-8818 ; 0000-0002-5008-5167 ; 0000-0001-8896-352X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9606606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du, Jianhe</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Chen, Yuanzhi</creatorcontrib><creatorcontrib>Jin, Libiao</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><title>Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, a tensor-based joint channel parameter estimation and information symbol detection scheme is developed for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communication systems. At the base station (BS), the information symbols are encoded according to the Khatri-Rao space-time (KRST) method and transmitted through time-varying channels. The received signals at the mobile station (MS) are constructed into a nested complex-valued parallel factor (PARAFAC) model, which contains an outer model and an inner model, respectively. With outer model, we estimate the compound channel matrix and detect the information symbols considering the sparse scattering nature of mmWave channels. With inner model, we extract physical parameters, including angles of arrival/departure (AoAs/AoDs), Doppler shifts and complex path gains from the estimated compound channel matrix. These physical parameters can be used to significantly reduce feedback overhead. A tricky way here is that we convert complex inner-submodel into a real one such that the computational complexity is reduced. Compared with existing schemes, the proposed one improves the estimation accuracy with low computational complexity, and is applicable for both uniform linear arrays (ULAs) and uniform planar arrays (UPAs). Simulation results demonstrate the effectiveness of the proposed joint channel estimation and information symbol detection scheme.</description><subject>Channel estimation</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Compound channels</subject><subject>Encoding</subject><subject>Estimation</subject><subject>joint estimation and detection</subject><subject>Linear arrays</subject><subject>Massive MIMO</subject><subject>Mathematical models</subject><subject>Matrices (mathematics)</subject><subject>Millimeter waves</subject><subject>MIMO communication</subject><subject>mmWave</subject><subject>Parameter estimation</subject><subject>Physical properties</subject><subject>Symbols</subject><subject>Tensor</subject><subject>Tensors</subject><subject>time-varying channels</subject><subject>Time-varying systems</subject><subject>Transmission line matrix methods</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi8BnzsvadO0jzqnTjYmrP54C1l6mR1rq0kn7L83c0M4-B7H93vHfQi5ZDBgDPKbYv4y4MDZIGZcpCCPSI_lCYsgkelx6EHEkcjkxyk5834FwJIkT3tkWWDjWxfdaY8lfW6rpqPDT900uKYj31W17qq2obop6XxbL9o1vccOzd_Qto4WVY3Rm3bbqlnSun7XP0in2vtqp-PpLKR8h7U_JydWrz1eHLRPXh9GxfApmswex8PbSWR4zrqo5CbPQQDq2CAvZcIzi0IjLqRMzCJhwgiwEspYcmOzDGxexmUmhLZSLjjGfXK93_vl2u8N-k6t2o1rwknFUxASMpFmwQV7l3Gt9w6t-nLhVbdVDNQOpwo41Q6nOuAMkat9pELEf3ueQhoq_gWrt3Fm</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Du, Jianhe</creator><creator>Han, Meng</creator><creator>Chen, Yuanzhi</creator><creator>Jin, Libiao</creator><creator>Gao, Feifei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7538-8818</orcidid><orcidid>https://orcid.org/0000-0002-5008-5167</orcidid><orcidid>https://orcid.org/0000-0001-8896-352X</orcidid></search><sort><creationdate>2021</creationdate><title>Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems</title><author>Du, Jianhe ; Han, Meng ; Chen, Yuanzhi ; Jin, Libiao ; Gao, Feifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d2c99050ea3ce2d7428fe5aeeb774cb415c50f70d372cf880f9d3d855af77b2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Channel estimation</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Compound channels</topic><topic>Encoding</topic><topic>Estimation</topic><topic>joint estimation and detection</topic><topic>Linear arrays</topic><topic>Massive MIMO</topic><topic>Mathematical models</topic><topic>Matrices (mathematics)</topic><topic>Millimeter waves</topic><topic>MIMO communication</topic><topic>mmWave</topic><topic>Parameter estimation</topic><topic>Physical properties</topic><topic>Symbols</topic><topic>Tensor</topic><topic>Tensors</topic><topic>time-varying channels</topic><topic>Time-varying systems</topic><topic>Transmission line matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Jianhe</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Chen, Yuanzhi</creatorcontrib><creatorcontrib>Jin, Libiao</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Jianhe</au><au>Han, Meng</au><au>Chen, Yuanzhi</au><au>Jin, Libiao</au><au>Gao, Feifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2021</date><risdate>2021</risdate><volume>69</volume><spage>6251</spage><epage>6266</epage><pages>6251-6266</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, a tensor-based joint channel parameter estimation and information symbol detection scheme is developed for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communication systems. At the base station (BS), the information symbols are encoded according to the Khatri-Rao space-time (KRST) method and transmitted through time-varying channels. The received signals at the mobile station (MS) are constructed into a nested complex-valued parallel factor (PARAFAC) model, which contains an outer model and an inner model, respectively. With outer model, we estimate the compound channel matrix and detect the information symbols considering the sparse scattering nature of mmWave channels. With inner model, we extract physical parameters, including angles of arrival/departure (AoAs/AoDs), Doppler shifts and complex path gains from the estimated compound channel matrix. These physical parameters can be used to significantly reduce feedback overhead. A tricky way here is that we convert complex inner-submodel into a real one such that the computational complexity is reduced. Compared with existing schemes, the proposed one improves the estimation accuracy with low computational complexity, and is applicable for both uniform linear arrays (ULAs) and uniform planar arrays (UPAs). Simulation results demonstrate the effectiveness of the proposed joint channel estimation and information symbol detection scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2021.3125607</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7538-8818</orcidid><orcidid>https://orcid.org/0000-0002-5008-5167</orcidid><orcidid>https://orcid.org/0000-0001-8896-352X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2021, Vol.69, p.6251-6266
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_9606606
source IEEE/IET Electronic Library (IEL)
subjects Channel estimation
Communications systems
Complexity
Compound channels
Encoding
Estimation
joint estimation and detection
Linear arrays
Massive MIMO
Mathematical models
Matrices (mathematics)
Millimeter waves
MIMO communication
mmWave
Parameter estimation
Physical properties
Symbols
Tensor
Tensors
time-varying channels
Time-varying systems
Transmission line matrix methods
title Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor-Based%20Joint%20Channel%20Estimation%20and%20Symbol%20Detection%20for%20Time-Varying%20mmWave%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Du,%20Jianhe&rft.date=2021&rft.volume=69&rft.spage=6251&rft.epage=6266&rft.pages=6251-6266&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2021.3125607&rft_dat=%3Cproquest_RIE%3E2605708568%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605708568&rft_id=info:pmid/&rft_ieee_id=9606606&rfr_iscdi=true