Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems
In this paper, a tensor-based joint channel parameter estimation and information symbol detection scheme is developed for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communication systems. At the base station (BS), the information symbols are encoded according to the Khatr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2021, Vol.69, p.6251-6266 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6266 |
---|---|
container_issue | |
container_start_page | 6251 |
container_title | IEEE transactions on signal processing |
container_volume | 69 |
creator | Du, Jianhe Han, Meng Chen, Yuanzhi Jin, Libiao Gao, Feifei |
description | In this paper, a tensor-based joint channel parameter estimation and information symbol detection scheme is developed for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communication systems. At the base station (BS), the information symbols are encoded according to the Khatri-Rao space-time (KRST) method and transmitted through time-varying channels. The received signals at the mobile station (MS) are constructed into a nested complex-valued parallel factor (PARAFAC) model, which contains an outer model and an inner model, respectively. With outer model, we estimate the compound channel matrix and detect the information symbols considering the sparse scattering nature of mmWave channels. With inner model, we extract physical parameters, including angles of arrival/departure (AoAs/AoDs), Doppler shifts and complex path gains from the estimated compound channel matrix. These physical parameters can be used to significantly reduce feedback overhead. A tricky way here is that we convert complex inner-submodel into a real one such that the computational complexity is reduced. Compared with existing schemes, the proposed one improves the estimation accuracy with low computational complexity, and is applicable for both uniform linear arrays (ULAs) and uniform planar arrays (UPAs). Simulation results demonstrate the effectiveness of the proposed joint channel estimation and information symbol detection scheme. |
doi_str_mv | 10.1109/TSP.2021.3125607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9606606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606606</ieee_id><sourcerecordid>2605708568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d2c99050ea3ce2d7428fe5aeeb774cb415c50f70d372cf880f9d3d855af77b2e3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8BnzsvadO0jzqnTjYmrP54C1l6mR1rq0kn7L83c0M4-B7H93vHfQi5ZDBgDPKbYv4y4MDZIGZcpCCPSI_lCYsgkelx6EHEkcjkxyk5834FwJIkT3tkWWDjWxfdaY8lfW6rpqPDT900uKYj31W17qq2obop6XxbL9o1vccOzd_Qto4WVY3Rm3bbqlnSun7XP0in2vtqp-PpLKR8h7U_JydWrz1eHLRPXh9GxfApmswex8PbSWR4zrqo5CbPQQDq2CAvZcIzi0IjLqRMzCJhwgiwEspYcmOzDGxexmUmhLZSLjjGfXK93_vl2u8N-k6t2o1rwknFUxASMpFmwQV7l3Gt9w6t-nLhVbdVDNQOpwo41Q6nOuAMkat9pELEf3ueQhoq_gWrt3Fm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605708568</pqid></control><display><type>article</type><title>Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Du, Jianhe ; Han, Meng ; Chen, Yuanzhi ; Jin, Libiao ; Gao, Feifei</creator><creatorcontrib>Du, Jianhe ; Han, Meng ; Chen, Yuanzhi ; Jin, Libiao ; Gao, Feifei</creatorcontrib><description>In this paper, a tensor-based joint channel parameter estimation and information symbol detection scheme is developed for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communication systems. At the base station (BS), the information symbols are encoded according to the Khatri-Rao space-time (KRST) method and transmitted through time-varying channels. The received signals at the mobile station (MS) are constructed into a nested complex-valued parallel factor (PARAFAC) model, which contains an outer model and an inner model, respectively. With outer model, we estimate the compound channel matrix and detect the information symbols considering the sparse scattering nature of mmWave channels. With inner model, we extract physical parameters, including angles of arrival/departure (AoAs/AoDs), Doppler shifts and complex path gains from the estimated compound channel matrix. These physical parameters can be used to significantly reduce feedback overhead. A tricky way here is that we convert complex inner-submodel into a real one such that the computational complexity is reduced. Compared with existing schemes, the proposed one improves the estimation accuracy with low computational complexity, and is applicable for both uniform linear arrays (ULAs) and uniform planar arrays (UPAs). Simulation results demonstrate the effectiveness of the proposed joint channel estimation and information symbol detection scheme.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2021.3125607</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel estimation ; Communications systems ; Complexity ; Compound channels ; Encoding ; Estimation ; joint estimation and detection ; Linear arrays ; Massive MIMO ; Mathematical models ; Matrices (mathematics) ; Millimeter waves ; MIMO communication ; mmWave ; Parameter estimation ; Physical properties ; Symbols ; Tensor ; Tensors ; time-varying channels ; Time-varying systems ; Transmission line matrix methods</subject><ispartof>IEEE transactions on signal processing, 2021, Vol.69, p.6251-6266</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d2c99050ea3ce2d7428fe5aeeb774cb415c50f70d372cf880f9d3d855af77b2e3</citedby><cites>FETCH-LOGICAL-c291t-d2c99050ea3ce2d7428fe5aeeb774cb415c50f70d372cf880f9d3d855af77b2e3</cites><orcidid>0000-0002-7538-8818 ; 0000-0002-5008-5167 ; 0000-0001-8896-352X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9606606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Du, Jianhe</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Chen, Yuanzhi</creatorcontrib><creatorcontrib>Jin, Libiao</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><title>Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, a tensor-based joint channel parameter estimation and information symbol detection scheme is developed for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communication systems. At the base station (BS), the information symbols are encoded according to the Khatri-Rao space-time (KRST) method and transmitted through time-varying channels. The received signals at the mobile station (MS) are constructed into a nested complex-valued parallel factor (PARAFAC) model, which contains an outer model and an inner model, respectively. With outer model, we estimate the compound channel matrix and detect the information symbols considering the sparse scattering nature of mmWave channels. With inner model, we extract physical parameters, including angles of arrival/departure (AoAs/AoDs), Doppler shifts and complex path gains from the estimated compound channel matrix. These physical parameters can be used to significantly reduce feedback overhead. A tricky way here is that we convert complex inner-submodel into a real one such that the computational complexity is reduced. Compared with existing schemes, the proposed one improves the estimation accuracy with low computational complexity, and is applicable for both uniform linear arrays (ULAs) and uniform planar arrays (UPAs). Simulation results demonstrate the effectiveness of the proposed joint channel estimation and information symbol detection scheme.</description><subject>Channel estimation</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Compound channels</subject><subject>Encoding</subject><subject>Estimation</subject><subject>joint estimation and detection</subject><subject>Linear arrays</subject><subject>Massive MIMO</subject><subject>Mathematical models</subject><subject>Matrices (mathematics)</subject><subject>Millimeter waves</subject><subject>MIMO communication</subject><subject>mmWave</subject><subject>Parameter estimation</subject><subject>Physical properties</subject><subject>Symbols</subject><subject>Tensor</subject><subject>Tensors</subject><subject>time-varying channels</subject><subject>Time-varying systems</subject><subject>Transmission line matrix methods</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi8BnzsvadO0jzqnTjYmrP54C1l6mR1rq0kn7L83c0M4-B7H93vHfQi5ZDBgDPKbYv4y4MDZIGZcpCCPSI_lCYsgkelx6EHEkcjkxyk5834FwJIkT3tkWWDjWxfdaY8lfW6rpqPDT900uKYj31W17qq2obop6XxbL9o1vccOzd_Qto4WVY3Rm3bbqlnSun7XP0in2vtqp-PpLKR8h7U_JydWrz1eHLRPXh9GxfApmswex8PbSWR4zrqo5CbPQQDq2CAvZcIzi0IjLqRMzCJhwgiwEspYcmOzDGxexmUmhLZSLjjGfXK93_vl2u8N-k6t2o1rwknFUxASMpFmwQV7l3Gt9w6t-nLhVbdVDNQOpwo41Q6nOuAMkat9pELEf3ueQhoq_gWrt3Fm</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Du, Jianhe</creator><creator>Han, Meng</creator><creator>Chen, Yuanzhi</creator><creator>Jin, Libiao</creator><creator>Gao, Feifei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7538-8818</orcidid><orcidid>https://orcid.org/0000-0002-5008-5167</orcidid><orcidid>https://orcid.org/0000-0001-8896-352X</orcidid></search><sort><creationdate>2021</creationdate><title>Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems</title><author>Du, Jianhe ; Han, Meng ; Chen, Yuanzhi ; Jin, Libiao ; Gao, Feifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d2c99050ea3ce2d7428fe5aeeb774cb415c50f70d372cf880f9d3d855af77b2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Channel estimation</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Compound channels</topic><topic>Encoding</topic><topic>Estimation</topic><topic>joint estimation and detection</topic><topic>Linear arrays</topic><topic>Massive MIMO</topic><topic>Mathematical models</topic><topic>Matrices (mathematics)</topic><topic>Millimeter waves</topic><topic>MIMO communication</topic><topic>mmWave</topic><topic>Parameter estimation</topic><topic>Physical properties</topic><topic>Symbols</topic><topic>Tensor</topic><topic>Tensors</topic><topic>time-varying channels</topic><topic>Time-varying systems</topic><topic>Transmission line matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Jianhe</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Chen, Yuanzhi</creatorcontrib><creatorcontrib>Jin, Libiao</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Jianhe</au><au>Han, Meng</au><au>Chen, Yuanzhi</au><au>Jin, Libiao</au><au>Gao, Feifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2021</date><risdate>2021</risdate><volume>69</volume><spage>6251</spage><epage>6266</epage><pages>6251-6266</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, a tensor-based joint channel parameter estimation and information symbol detection scheme is developed for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communication systems. At the base station (BS), the information symbols are encoded according to the Khatri-Rao space-time (KRST) method and transmitted through time-varying channels. The received signals at the mobile station (MS) are constructed into a nested complex-valued parallel factor (PARAFAC) model, which contains an outer model and an inner model, respectively. With outer model, we estimate the compound channel matrix and detect the information symbols considering the sparse scattering nature of mmWave channels. With inner model, we extract physical parameters, including angles of arrival/departure (AoAs/AoDs), Doppler shifts and complex path gains from the estimated compound channel matrix. These physical parameters can be used to significantly reduce feedback overhead. A tricky way here is that we convert complex inner-submodel into a real one such that the computational complexity is reduced. Compared with existing schemes, the proposed one improves the estimation accuracy with low computational complexity, and is applicable for both uniform linear arrays (ULAs) and uniform planar arrays (UPAs). Simulation results demonstrate the effectiveness of the proposed joint channel estimation and information symbol detection scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2021.3125607</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7538-8818</orcidid><orcidid>https://orcid.org/0000-0002-5008-5167</orcidid><orcidid>https://orcid.org/0000-0001-8896-352X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2021, Vol.69, p.6251-6266 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_9606606 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Channel estimation Communications systems Complexity Compound channels Encoding Estimation joint estimation and detection Linear arrays Massive MIMO Mathematical models Matrices (mathematics) Millimeter waves MIMO communication mmWave Parameter estimation Physical properties Symbols Tensor Tensors time-varying channels Time-varying systems Transmission line matrix methods |
title | Tensor-Based Joint Channel Estimation and Symbol Detection for Time-Varying mmWave Massive MIMO Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor-Based%20Joint%20Channel%20Estimation%20and%20Symbol%20Detection%20for%20Time-Varying%20mmWave%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Du,%20Jianhe&rft.date=2021&rft.volume=69&rft.spage=6251&rft.epage=6266&rft.pages=6251-6266&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2021.3125607&rft_dat=%3Cproquest_RIE%3E2605708568%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605708568&rft_id=info:pmid/&rft_ieee_id=9606606&rfr_iscdi=true |