A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection
Advances in moving object detection have been driven by the active application of deep learning methods. However, many existing models render superior detection accuracy at the cost of high computational complexity and slow inference speed. This fact has hindered the development of such models in mo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.148433-148448 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148448 |
---|---|
container_issue | |
container_start_page | 148433 |
container_title | IEEE access |
container_volume | 9 |
creator | Hou, Bingxin Liu, Ying Ling, Nam Liu, Lingzhi Ren, Yongxiong |
description | Advances in moving object detection have been driven by the active application of deep learning methods. However, many existing models render superior detection accuracy at the cost of high computational complexity and slow inference speed. This fact has hindered the development of such models in mobile and embedded vision tasks, which need to be carried out in a timely fashion on a computationally limited platform. In this paper, we propose a super-fast (inference speed-154 fps) and lightweight (model size-1.45 MB) end-to-end 3D separable convolutional neural network with a multi-input multi-output (MIMO) strategy named "3DS_MM" for moving object detection. To improve detection accuracy, the proposed model adopts 3D convolution which is more suitable to extract both spatial and temporal information in video data than 2D convolution. To reduce model size and computational complexity, the standard 3D convolution is decomposed into depthwise and pointwise convolutions. Besides, we proposed a MIMO strategy to increase inference speed, which can take multiple frames as the network input and output multiple frames of detection results. Further, we conducted the scene dependent evaluation (SDE) and scene independent evaluation (SIE) on the benchmark CDnet2014 and DAVIS2016 datasets. Compared to state-of-the-art approaches, our proposed method significantly increases the inference speed, reduces the model size, meanwhile achieving the highest detection accuracy in the SDE setup and maintaining a competitive detection accuracy in the SIE setup. |
doi_str_mv | 10.1109/ACCESS.2021.3123975 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9592757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9592757</ieee_id><doaj_id>oai_doaj_org_article_95b6bf8fc40a4a729d71a7693329d1e2</doaj_id><sourcerecordid>2595723280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-168af8f33980c6da62712f844448ac6f09ddee3c33860f3e958970e5741528f33</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOALuFjinOJH_TpW4VWp0ENBHC032RSXUBfHacXf45AKsQfveLUzI-1k2RXBI0KwvpkUxd1iMaKYkhEjlGnJj7IzSoTOGWfi-B8-zS7bdo1TqTTi8izbTdC9bSOaudV73EP_InaLFrC1wS4bQIXf7HzTRec3tkHP0IXfFvc-fKA3F9_RU9dEl0832y4e8LyL_af2AT35ndus0Hy5hjKiW4ipJamL7KS2TQuXh36evd7fvRSP-Wz-MC0ms7wcYxVzIpStVc2YVrgUlRVUElqrcSplS1FjXVUArGRMCVwz0FxpiYHLMeG0551n00G38nZttsF92vBtvHXmd-DDytgQXdmA0XwplsksOduxlVRXklgpNGMJEqBJ63rQ2gb_1UEbzdp3IV2lNZSnY1JGFU5bbNgqg2_bAPWfK8Gmz8sMeZk-L3PIK7GuBpYDgD-G5ppKLtkPupGQZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595723280</pqid></control><display><type>article</type><title>A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hou, Bingxin ; Liu, Ying ; Ling, Nam ; Liu, Lingzhi ; Ren, Yongxiong</creator><creatorcontrib>Hou, Bingxin ; Liu, Ying ; Ling, Nam ; Liu, Lingzhi ; Ren, Yongxiong</creatorcontrib><description>Advances in moving object detection have been driven by the active application of deep learning methods. However, many existing models render superior detection accuracy at the cost of high computational complexity and slow inference speed. This fact has hindered the development of such models in mobile and embedded vision tasks, which need to be carried out in a timely fashion on a computationally limited platform. In this paper, we propose a super-fast (inference speed-154 fps) and lightweight (model size-1.45 MB) end-to-end 3D separable convolutional neural network with a multi-input multi-output (MIMO) strategy named "3DS_MM" for moving object detection. To improve detection accuracy, the proposed model adopts 3D convolution which is more suitable to extract both spatial and temporal information in video data than 2D convolution. To reduce model size and computational complexity, the standard 3D convolution is decomposed into depthwise and pointwise convolutions. Besides, we proposed a MIMO strategy to increase inference speed, which can take multiple frames as the network input and output multiple frames of detection results. Further, we conducted the scene dependent evaluation (SDE) and scene independent evaluation (SIE) on the benchmark CDnet2014 and DAVIS2016 datasets. Compared to state-of-the-art approaches, our proposed method significantly increases the inference speed, reduces the model size, meanwhile achieving the highest detection accuracy in the SDE setup and maintaining a competitive detection accuracy in the SIE setup.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3123975</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D separable convolution ; Accuracy ; Artificial neural networks ; Complexity ; Computational modeling ; Convolution ; Convolutional neural network ; depthwise convolution ; Frames (data processing) ; Inference ; Lightweight ; MIMO communication ; Model accuracy ; moving object detection ; Moving object recognition ; multi-input multi-output ; Neural networks ; Object detection ; pointwise convolution ; scene independent evaluation ; Solid modeling ; Strategy ; Task analysis ; Three dimensional models ; Three-dimensional displays ; Two dimensional models ; unseen videos ; video analytics ; Video data ; video surveillance</subject><ispartof>IEEE access, 2021, Vol.9, p.148433-148448</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-168af8f33980c6da62712f844448ac6f09ddee3c33860f3e958970e5741528f33</citedby><cites>FETCH-LOGICAL-c408t-168af8f33980c6da62712f844448ac6f09ddee3c33860f3e958970e5741528f33</cites><orcidid>0000-0002-9681-656X ; 0000-0002-5741-7937 ; 0000-0002-8596-5199 ; 0000-0003-3380-4243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9592757$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hou, Bingxin</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Ling, Nam</creatorcontrib><creatorcontrib>Liu, Lingzhi</creatorcontrib><creatorcontrib>Ren, Yongxiong</creatorcontrib><title>A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Advances in moving object detection have been driven by the active application of deep learning methods. However, many existing models render superior detection accuracy at the cost of high computational complexity and slow inference speed. This fact has hindered the development of such models in mobile and embedded vision tasks, which need to be carried out in a timely fashion on a computationally limited platform. In this paper, we propose a super-fast (inference speed-154 fps) and lightweight (model size-1.45 MB) end-to-end 3D separable convolutional neural network with a multi-input multi-output (MIMO) strategy named "3DS_MM" for moving object detection. To improve detection accuracy, the proposed model adopts 3D convolution which is more suitable to extract both spatial and temporal information in video data than 2D convolution. To reduce model size and computational complexity, the standard 3D convolution is decomposed into depthwise and pointwise convolutions. Besides, we proposed a MIMO strategy to increase inference speed, which can take multiple frames as the network input and output multiple frames of detection results. Further, we conducted the scene dependent evaluation (SDE) and scene independent evaluation (SIE) on the benchmark CDnet2014 and DAVIS2016 datasets. Compared to state-of-the-art approaches, our proposed method significantly increases the inference speed, reduces the model size, meanwhile achieving the highest detection accuracy in the SDE setup and maintaining a competitive detection accuracy in the SIE setup.</description><subject>3D separable convolution</subject><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>Convolutional neural network</subject><subject>depthwise convolution</subject><subject>Frames (data processing)</subject><subject>Inference</subject><subject>Lightweight</subject><subject>MIMO communication</subject><subject>Model accuracy</subject><subject>moving object detection</subject><subject>Moving object recognition</subject><subject>multi-input multi-output</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>pointwise convolution</subject><subject>scene independent evaluation</subject><subject>Solid modeling</subject><subject>Strategy</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Two dimensional models</subject><subject>unseen videos</subject><subject>video analytics</subject><subject>Video data</subject><subject>video surveillance</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOALuFjinOJH_TpW4VWp0ENBHC032RSXUBfHacXf45AKsQfveLUzI-1k2RXBI0KwvpkUxd1iMaKYkhEjlGnJj7IzSoTOGWfi-B8-zS7bdo1TqTTi8izbTdC9bSOaudV73EP_InaLFrC1wS4bQIXf7HzTRec3tkHP0IXfFvc-fKA3F9_RU9dEl0832y4e8LyL_af2AT35ndus0Hy5hjKiW4ipJamL7KS2TQuXh36evd7fvRSP-Wz-MC0ms7wcYxVzIpStVc2YVrgUlRVUElqrcSplS1FjXVUArGRMCVwz0FxpiYHLMeG0551n00G38nZttsF92vBtvHXmd-DDytgQXdmA0XwplsksOduxlVRXklgpNGMJEqBJ63rQ2gb_1UEbzdp3IV2lNZSnY1JGFU5bbNgqg2_bAPWfK8Gmz8sMeZk-L3PIK7GuBpYDgD-G5ppKLtkPupGQZA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hou, Bingxin</creator><creator>Liu, Ying</creator><creator>Ling, Nam</creator><creator>Liu, Lingzhi</creator><creator>Ren, Yongxiong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9681-656X</orcidid><orcidid>https://orcid.org/0000-0002-5741-7937</orcidid><orcidid>https://orcid.org/0000-0002-8596-5199</orcidid><orcidid>https://orcid.org/0000-0003-3380-4243</orcidid></search><sort><creationdate>2021</creationdate><title>A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection</title><author>Hou, Bingxin ; Liu, Ying ; Ling, Nam ; Liu, Lingzhi ; Ren, Yongxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-168af8f33980c6da62712f844448ac6f09ddee3c33860f3e958970e5741528f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D separable convolution</topic><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>Convolutional neural network</topic><topic>depthwise convolution</topic><topic>Frames (data processing)</topic><topic>Inference</topic><topic>Lightweight</topic><topic>MIMO communication</topic><topic>Model accuracy</topic><topic>moving object detection</topic><topic>Moving object recognition</topic><topic>multi-input multi-output</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>pointwise convolution</topic><topic>scene independent evaluation</topic><topic>Solid modeling</topic><topic>Strategy</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Two dimensional models</topic><topic>unseen videos</topic><topic>video analytics</topic><topic>Video data</topic><topic>video surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Bingxin</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Ling, Nam</creatorcontrib><creatorcontrib>Liu, Lingzhi</creatorcontrib><creatorcontrib>Ren, Yongxiong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Bingxin</au><au>Liu, Ying</au><au>Ling, Nam</au><au>Liu, Lingzhi</au><au>Ren, Yongxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>148433</spage><epage>148448</epage><pages>148433-148448</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Advances in moving object detection have been driven by the active application of deep learning methods. However, many existing models render superior detection accuracy at the cost of high computational complexity and slow inference speed. This fact has hindered the development of such models in mobile and embedded vision tasks, which need to be carried out in a timely fashion on a computationally limited platform. In this paper, we propose a super-fast (inference speed-154 fps) and lightweight (model size-1.45 MB) end-to-end 3D separable convolutional neural network with a multi-input multi-output (MIMO) strategy named "3DS_MM" for moving object detection. To improve detection accuracy, the proposed model adopts 3D convolution which is more suitable to extract both spatial and temporal information in video data than 2D convolution. To reduce model size and computational complexity, the standard 3D convolution is decomposed into depthwise and pointwise convolutions. Besides, we proposed a MIMO strategy to increase inference speed, which can take multiple frames as the network input and output multiple frames of detection results. Further, we conducted the scene dependent evaluation (SDE) and scene independent evaluation (SIE) on the benchmark CDnet2014 and DAVIS2016 datasets. Compared to state-of-the-art approaches, our proposed method significantly increases the inference speed, reduces the model size, meanwhile achieving the highest detection accuracy in the SDE setup and maintaining a competitive detection accuracy in the SIE setup.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3123975</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9681-656X</orcidid><orcidid>https://orcid.org/0000-0002-5741-7937</orcidid><orcidid>https://orcid.org/0000-0002-8596-5199</orcidid><orcidid>https://orcid.org/0000-0003-3380-4243</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.148433-148448 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9592757 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | 3D separable convolution Accuracy Artificial neural networks Complexity Computational modeling Convolution Convolutional neural network depthwise convolution Frames (data processing) Inference Lightweight MIMO communication Model accuracy moving object detection Moving object recognition multi-input multi-output Neural networks Object detection pointwise convolution scene independent evaluation Solid modeling Strategy Task analysis Three dimensional models Three-dimensional displays Two dimensional models unseen videos video analytics Video data video surveillance |
title | A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Lightweight%203D%20Separable%20Convolutional%20Neural%20Network%20With%20Multi-Input%20Multi-Output%20for%20Moving%20Object%20Detection&rft.jtitle=IEEE%20access&rft.au=Hou,%20Bingxin&rft.date=2021&rft.volume=9&rft.spage=148433&rft.epage=148448&rft.pages=148433-148448&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3123975&rft_dat=%3Cproquest_ieee_%3E2595723280%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595723280&rft_id=info:pmid/&rft_ieee_id=9592757&rft_doaj_id=oai_doaj_org_article_95b6bf8fc40a4a729d71a7693329d1e2&rfr_iscdi=true |