Spatial Heterogeneity of Albedo at Subpixel Satellite Scales and its Effect in Validation: Airborne Remote Sensing Results From HiWATER
Characterizing the subpixel heterogeneity within satellite pixels is a key issue in validation. Nevertheless, it is challenging due to multi-scale problems in the geological description based on remote sensing. Based on an airborne platform, the multi-scale variation laws of several key indicators i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Wu, Xiaodan Wen, Jianguang Xiao, Qing You, Dongqin Gong, Baochang Wang, Jingping Ma, Dujuan Lin, Xingwen |
description | Characterizing the subpixel heterogeneity within satellite pixels is a key issue in validation. Nevertheless, it is challenging due to multi-scale problems in the geological description based on remote sensing. Based on an airborne platform, the multi-scale variation laws of several key indicators in validation including spatial heterogeneity (SH), representativeness errors, and representative area with subpixel size were analyzed and discussed. Furthermore, this article discussed the optimal subpixel size to assess SH within a coarse pixel and the optimal footprint of in situ measurements for building dense and sparse validation networks. SH decreases with the increase of subpixel size. And a reduction of about 10% can be obtained from 5 m \times 5 m to 150 m \times150 m subpixel size, depending on the degree of SH within the typical satellite pixels. And the sensitiveness of SH to subpixel size decreases gradually with the increasing of subpixel size. Ideally, SH should be assessed using maps with pixel sizes corresponding to the footprint of in situ measurements. Regarding the deployment of future validation networks, the footprint of in situ sites should be designed at least larger than 25 m for dense networks. And much larger footprints (e.g., 100 m) are preferred in designing sparse networks. The representativeness error is not fully related to subpixel sizes because it is affected by many factors. The findings are also transferable to model evaluation when comparing model grid values to local observations. |
doi_str_mv | 10.1109/TGRS.2021.3124026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9592756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9592756</ieee_id><sourcerecordid>2629127054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-effded0f0b9eeca0fc178e22f4c0d0b5970bca883f5ff351746d78cd20d11d9a3</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWA8PIN4EvN46yR7jXZHWCoLQrXq5ZJOJRNJNTVLQJ_C13VLxahj4v3-Yj5ArBlPGQNyuH1btlANn05zxAnh1RCasLJsMqqI4JhNgosp4I_gpOYvxA4AVJasn5KfdymSlo0tMGPw7DmjTN_WGzlyP2lOZaLvrt_YLHW1lQudsQtoq6TBSOWhqU6RzY1Alagf6Kp3VY6Mf7ujMht6HAekKN34P4RDt8D6ucedGahH8hi7t22w9X12QEyNdxMu_eU5eFvP1_TJ7en54vJ89ZYqLPGVojEYNBnqBqCQYxeoGOTeFAg19KWrolWya3JTG5OOHRaXrRmkOmjEtZH5Obg692-A_dxhT9-F3YRhPdrzigvEaymJMsUNKBR9jQNNtg93I8N0x6Pa-u73vbu-7-_M9MtcHxiLif16Ugtdllf8C7QV95A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629127054</pqid></control><display><type>article</type><title>Spatial Heterogeneity of Albedo at Subpixel Satellite Scales and its Effect in Validation: Airborne Remote Sensing Results From HiWATER</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Xiaodan ; Wen, Jianguang ; Xiao, Qing ; You, Dongqin ; Gong, Baochang ; Wang, Jingping ; Ma, Dujuan ; Lin, Xingwen</creator><creatorcontrib>Wu, Xiaodan ; Wen, Jianguang ; Xiao, Qing ; You, Dongqin ; Gong, Baochang ; Wang, Jingping ; Ma, Dujuan ; Lin, Xingwen</creatorcontrib><description><![CDATA[Characterizing the subpixel heterogeneity within satellite pixels is a key issue in validation. Nevertheless, it is challenging due to multi-scale problems in the geological description based on remote sensing. Based on an airborne platform, the multi-scale variation laws of several key indicators in validation including spatial heterogeneity (SH), representativeness errors, and representative area with subpixel size were analyzed and discussed. Furthermore, this article discussed the optimal subpixel size to assess SH within a coarse pixel and the optimal footprint of in situ measurements for building dense and sparse validation networks. SH decreases with the increase of subpixel size. And a reduction of about 10% can be obtained from 5 m <inline-formula> <tex-math notation="LaTeX">\times 5 </tex-math></inline-formula> m to 150 m <inline-formula> <tex-math notation="LaTeX">\times150 </tex-math></inline-formula> m subpixel size, depending on the degree of SH within the typical satellite pixels. And the sensitiveness of SH to subpixel size decreases gradually with the increasing of subpixel size. Ideally, SH should be assessed using maps with pixel sizes corresponding to the footprint of in situ measurements. Regarding the deployment of future validation networks, the footprint of in situ sites should be designed at least larger than 25 m for dense networks. And much larger footprints (e.g., 100 m) are preferred in designing sparse networks. The representativeness error is not fully related to subpixel sizes because it is affected by many factors. The findings are also transferable to model evaluation when comparing model grid values to local observations.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3124026</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Airborne remote sensing ; Airborne sensing ; Albedo ; Atmospheric measurements ; Atmospheric modeling ; Geologic measurements ; Heterogeneity ; In situ measurement ; Measurement uncertainty ; Networks ; Patchiness ; Pixels ; Remote sensing ; representativeness errors ; Satellites ; Size measurement ; Spatial heterogeneity ; spatial heterogeneity (SH) ; Spatial resolution ; subpixel size ; validation</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-effded0f0b9eeca0fc178e22f4c0d0b5970bca883f5ff351746d78cd20d11d9a3</citedby><cites>FETCH-LOGICAL-c293t-effded0f0b9eeca0fc178e22f4c0d0b5970bca883f5ff351746d78cd20d11d9a3</cites><orcidid>0000-0001-5355-4400 ; 0000-0003-4602-502X ; 0000-0002-1060-1817 ; 0000-0002-5678-1307 ; 0000-0002-9528-838X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9592756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9592756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Xiaodan</creatorcontrib><creatorcontrib>Wen, Jianguang</creatorcontrib><creatorcontrib>Xiao, Qing</creatorcontrib><creatorcontrib>You, Dongqin</creatorcontrib><creatorcontrib>Gong, Baochang</creatorcontrib><creatorcontrib>Wang, Jingping</creatorcontrib><creatorcontrib>Ma, Dujuan</creatorcontrib><creatorcontrib>Lin, Xingwen</creatorcontrib><title>Spatial Heterogeneity of Albedo at Subpixel Satellite Scales and its Effect in Validation: Airborne Remote Sensing Results From HiWATER</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Characterizing the subpixel heterogeneity within satellite pixels is a key issue in validation. Nevertheless, it is challenging due to multi-scale problems in the geological description based on remote sensing. Based on an airborne platform, the multi-scale variation laws of several key indicators in validation including spatial heterogeneity (SH), representativeness errors, and representative area with subpixel size were analyzed and discussed. Furthermore, this article discussed the optimal subpixel size to assess SH within a coarse pixel and the optimal footprint of in situ measurements for building dense and sparse validation networks. SH decreases with the increase of subpixel size. And a reduction of about 10% can be obtained from 5 m <inline-formula> <tex-math notation="LaTeX">\times 5 </tex-math></inline-formula> m to 150 m <inline-formula> <tex-math notation="LaTeX">\times150 </tex-math></inline-formula> m subpixel size, depending on the degree of SH within the typical satellite pixels. And the sensitiveness of SH to subpixel size decreases gradually with the increasing of subpixel size. Ideally, SH should be assessed using maps with pixel sizes corresponding to the footprint of in situ measurements. Regarding the deployment of future validation networks, the footprint of in situ sites should be designed at least larger than 25 m for dense networks. And much larger footprints (e.g., 100 m) are preferred in designing sparse networks. The representativeness error is not fully related to subpixel sizes because it is affected by many factors. The findings are also transferable to model evaluation when comparing model grid values to local observations.]]></description><subject>Airborne remote sensing</subject><subject>Airborne sensing</subject><subject>Albedo</subject><subject>Atmospheric measurements</subject><subject>Atmospheric modeling</subject><subject>Geologic measurements</subject><subject>Heterogeneity</subject><subject>In situ measurement</subject><subject>Measurement uncertainty</subject><subject>Networks</subject><subject>Patchiness</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>representativeness errors</subject><subject>Satellites</subject><subject>Size measurement</subject><subject>Spatial heterogeneity</subject><subject>spatial heterogeneity (SH)</subject><subject>Spatial resolution</subject><subject>subpixel size</subject><subject>validation</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEQhoMoWA8PIN4EvN46yR7jXZHWCoLQrXq5ZJOJRNJNTVLQJ_C13VLxahj4v3-Yj5ArBlPGQNyuH1btlANn05zxAnh1RCasLJsMqqI4JhNgosp4I_gpOYvxA4AVJasn5KfdymSlo0tMGPw7DmjTN_WGzlyP2lOZaLvrt_YLHW1lQudsQtoq6TBSOWhqU6RzY1Alagf6Kp3VY6Mf7ujMht6HAekKN34P4RDt8D6ucedGahH8hi7t22w9X12QEyNdxMu_eU5eFvP1_TJ7en54vJ89ZYqLPGVojEYNBnqBqCQYxeoGOTeFAg19KWrolWya3JTG5OOHRaXrRmkOmjEtZH5Obg692-A_dxhT9-F3YRhPdrzigvEaymJMsUNKBR9jQNNtg93I8N0x6Pa-u73vbu-7-_M9MtcHxiLif16Ugtdllf8C7QV95A</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wu, Xiaodan</creator><creator>Wen, Jianguang</creator><creator>Xiao, Qing</creator><creator>You, Dongqin</creator><creator>Gong, Baochang</creator><creator>Wang, Jingping</creator><creator>Ma, Dujuan</creator><creator>Lin, Xingwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5355-4400</orcidid><orcidid>https://orcid.org/0000-0003-4602-502X</orcidid><orcidid>https://orcid.org/0000-0002-1060-1817</orcidid><orcidid>https://orcid.org/0000-0002-5678-1307</orcidid><orcidid>https://orcid.org/0000-0002-9528-838X</orcidid></search><sort><creationdate>2022</creationdate><title>Spatial Heterogeneity of Albedo at Subpixel Satellite Scales and its Effect in Validation: Airborne Remote Sensing Results From HiWATER</title><author>Wu, Xiaodan ; Wen, Jianguang ; Xiao, Qing ; You, Dongqin ; Gong, Baochang ; Wang, Jingping ; Ma, Dujuan ; Lin, Xingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-effded0f0b9eeca0fc178e22f4c0d0b5970bca883f5ff351746d78cd20d11d9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Airborne remote sensing</topic><topic>Airborne sensing</topic><topic>Albedo</topic><topic>Atmospheric measurements</topic><topic>Atmospheric modeling</topic><topic>Geologic measurements</topic><topic>Heterogeneity</topic><topic>In situ measurement</topic><topic>Measurement uncertainty</topic><topic>Networks</topic><topic>Patchiness</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>representativeness errors</topic><topic>Satellites</topic><topic>Size measurement</topic><topic>Spatial heterogeneity</topic><topic>spatial heterogeneity (SH)</topic><topic>Spatial resolution</topic><topic>subpixel size</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaodan</creatorcontrib><creatorcontrib>Wen, Jianguang</creatorcontrib><creatorcontrib>Xiao, Qing</creatorcontrib><creatorcontrib>You, Dongqin</creatorcontrib><creatorcontrib>Gong, Baochang</creatorcontrib><creatorcontrib>Wang, Jingping</creatorcontrib><creatorcontrib>Ma, Dujuan</creatorcontrib><creatorcontrib>Lin, Xingwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Xiaodan</au><au>Wen, Jianguang</au><au>Xiao, Qing</au><au>You, Dongqin</au><au>Gong, Baochang</au><au>Wang, Jingping</au><au>Ma, Dujuan</au><au>Lin, Xingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Heterogeneity of Albedo at Subpixel Satellite Scales and its Effect in Validation: Airborne Remote Sensing Results From HiWATER</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Characterizing the subpixel heterogeneity within satellite pixels is a key issue in validation. Nevertheless, it is challenging due to multi-scale problems in the geological description based on remote sensing. Based on an airborne platform, the multi-scale variation laws of several key indicators in validation including spatial heterogeneity (SH), representativeness errors, and representative area with subpixel size were analyzed and discussed. Furthermore, this article discussed the optimal subpixel size to assess SH within a coarse pixel and the optimal footprint of in situ measurements for building dense and sparse validation networks. SH decreases with the increase of subpixel size. And a reduction of about 10% can be obtained from 5 m <inline-formula> <tex-math notation="LaTeX">\times 5 </tex-math></inline-formula> m to 150 m <inline-formula> <tex-math notation="LaTeX">\times150 </tex-math></inline-formula> m subpixel size, depending on the degree of SH within the typical satellite pixels. And the sensitiveness of SH to subpixel size decreases gradually with the increasing of subpixel size. Ideally, SH should be assessed using maps with pixel sizes corresponding to the footprint of in situ measurements. Regarding the deployment of future validation networks, the footprint of in situ sites should be designed at least larger than 25 m for dense networks. And much larger footprints (e.g., 100 m) are preferred in designing sparse networks. The representativeness error is not fully related to subpixel sizes because it is affected by many factors. The findings are also transferable to model evaluation when comparing model grid values to local observations.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3124026</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5355-4400</orcidid><orcidid>https://orcid.org/0000-0003-4602-502X</orcidid><orcidid>https://orcid.org/0000-0002-1060-1817</orcidid><orcidid>https://orcid.org/0000-0002-5678-1307</orcidid><orcidid>https://orcid.org/0000-0002-9528-838X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9592756 |
source | IEEE Electronic Library (IEL) |
subjects | Airborne remote sensing Airborne sensing Albedo Atmospheric measurements Atmospheric modeling Geologic measurements Heterogeneity In situ measurement Measurement uncertainty Networks Patchiness Pixels Remote sensing representativeness errors Satellites Size measurement Spatial heterogeneity spatial heterogeneity (SH) Spatial resolution subpixel size validation |
title | Spatial Heterogeneity of Albedo at Subpixel Satellite Scales and its Effect in Validation: Airborne Remote Sensing Results From HiWATER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Heterogeneity%20of%20Albedo%20at%20Subpixel%20Satellite%20Scales%20and%20its%20Effect%20in%20Validation:%20Airborne%20Remote%20Sensing%20Results%20From%20HiWATER&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wu,%20Xiaodan&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3124026&rft_dat=%3Cproquest_RIE%3E2629127054%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629127054&rft_id=info:pmid/&rft_ieee_id=9592756&rfr_iscdi=true |