Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems
The dual-side inductor-capacitor-capacitor (LCC) topology circuit has been widely adopted in wireless power transfer (WPT) systems due to its constant output current characteristic. However, most conventional control methods need specific synchronization techniques between the primary and secondary...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on transportation electrification 2022-06, Vol.8 (2), p.1944-1955 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1955 |
---|---|
container_issue | 2 |
container_start_page | 1944 |
container_title | IEEE transactions on transportation electrification |
container_volume | 8 |
creator | Li, Huang Xu, Junzhong Gao, Fei Zhang, Yun Yang, Xijun Tang, Houjun |
description | The dual-side inductor-capacitor-capacitor (LCC) topology circuit has been widely adopted in wireless power transfer (WPT) systems due to its constant output current characteristic. However, most conventional control methods need specific synchronization techniques between the primary and secondary sides to avoid the oscillation in the system, which increases the cost and control complexity. To solve this issue, this article proposes a new duty cycle control (DCC) strategy for a dual-side LCC resonant converter with a semibridgeless active rectifier (SAR). With such a control strategy, gate signals of the primary- and secondary-side circuits do not need to be synchronized, which could reduce the complexity and the cost of the WPT system. Besides, the switching frequency of the secondary side can be decreased significantly. This article first presents the modal analysis of phase shift control (PSC) and DCC. Then, generalized state-space averaging (GSSA) modeling with PSC and the hybrid average modeling with DCC are performed. In addition, controllers' design for both strategies is conducted to achieve the constant output voltage. Finally, the eigenvalues' analysis is used to determine the stability region of the WPT system. The theoretical analysis has been validated by both simulation and experimental results. |
doi_str_mv | 10.1109/TTE.2021.3123340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9591578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9591578</ieee_id><sourcerecordid>2653373573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-2d59b4326799f0c4c3e628c56650dba59e1d7e417f2929cc8afc9327f97ae1a23</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOObuBW8CXnfmo2maS-nmBwwUV_EyZOmJdHTtTFKl_96ODfHqvBye9xx4ELqmZE4pUXdluZwzwuicU8Z5Ss7QZJwskTJn5__yJZqFsCWEUMGFotkE2UUfB1wMtgFcdG30XYPX0ZsInwN2nceL3jTJuq4Ar4oCv0HoWtPGA_sNPoLHdYs_ag8NhIBfu59xU3rTBjeG9RAi7MIVunCmCTA7zSl6f1iWxVOyenl8Lu5XiWUkiwmrhNqknGVSKUdsajlkLLciywSpNkYooJWElErHFFPW5sZZxZl0ShqghvEpuj3e3fvuq4cQ9bbrfTu-1CwTnEsuJB8pcqSs70Lw4PTe1zvjB02JPtjUo019sKlPNsfKzbFSA8AfrkaDQub8F8iUb7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653373573</pqid></control><display><type>article</type><title>Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Huang ; Xu, Junzhong ; Gao, Fei ; Zhang, Yun ; Yang, Xijun ; Tang, Houjun</creator><creatorcontrib>Li, Huang ; Xu, Junzhong ; Gao, Fei ; Zhang, Yun ; Yang, Xijun ; Tang, Houjun</creatorcontrib><description>The dual-side inductor-capacitor-capacitor (LCC) topology circuit has been widely adopted in wireless power transfer (WPT) systems due to its constant output current characteristic. However, most conventional control methods need specific synchronization techniques between the primary and secondary sides to avoid the oscillation in the system, which increases the cost and control complexity. To solve this issue, this article proposes a new duty cycle control (DCC) strategy for a dual-side LCC resonant converter with a semibridgeless active rectifier (SAR). With such a control strategy, gate signals of the primary- and secondary-side circuits do not need to be synchronized, which could reduce the complexity and the cost of the WPT system. Besides, the switching frequency of the secondary side can be decreased significantly. This article first presents the modal analysis of phase shift control (PSC) and DCC. Then, generalized state-space averaging (GSSA) modeling with PSC and the hybrid average modeling with DCC are performed. In addition, controllers' design for both strategies is conducted to achieve the constant output voltage. Finally, the eigenvalues' analysis is used to determine the stability region of the WPT system. The theoretical analysis has been validated by both simulation and experimental results.</description><identifier>ISSN: 2332-7782</identifier><identifier>ISSN: 2577-4212</identifier><identifier>EISSN: 2332-7782</identifier><identifier>DOI: 10.1109/TTE.2021.3123340</identifier><identifier>CODEN: ITTEBP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Capacitors ; Circuits ; Complexity ; Control methods ; Dual-side inductor–capacitor–capacitor (LCC) ; duty cycle control (DCC) ; Eigenvalues ; generalized state-space averaging (GSSA) ; hybrid average modeling ; Inductors ; Integrated circuit modeling ; Modal analysis ; Modelling ; Resonant frequency ; stability ; Stability analysis ; Switches ; Synchronism ; Synchronization ; Topology ; wireless power transfer (WPT) ; Wireless power transmission</subject><ispartof>IEEE transactions on transportation electrification, 2022-06, Vol.8 (2), p.1944-1955</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-2d59b4326799f0c4c3e628c56650dba59e1d7e417f2929cc8afc9327f97ae1a23</citedby><cites>FETCH-LOGICAL-c206t-2d59b4326799f0c4c3e628c56650dba59e1d7e417f2929cc8afc9327f97ae1a23</cites><orcidid>0000-0002-6098-3403 ; 0000-0003-2496-3701 ; 0000-0003-1980-9021 ; 0000-0002-2043-9243 ; 0000-0003-3483-767X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9591578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9591578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Huang</creatorcontrib><creatorcontrib>Xu, Junzhong</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Yang, Xijun</creatorcontrib><creatorcontrib>Tang, Houjun</creatorcontrib><title>Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems</title><title>IEEE transactions on transportation electrification</title><addtitle>TTE</addtitle><description>The dual-side inductor-capacitor-capacitor (LCC) topology circuit has been widely adopted in wireless power transfer (WPT) systems due to its constant output current characteristic. However, most conventional control methods need specific synchronization techniques between the primary and secondary sides to avoid the oscillation in the system, which increases the cost and control complexity. To solve this issue, this article proposes a new duty cycle control (DCC) strategy for a dual-side LCC resonant converter with a semibridgeless active rectifier (SAR). With such a control strategy, gate signals of the primary- and secondary-side circuits do not need to be synchronized, which could reduce the complexity and the cost of the WPT system. Besides, the switching frequency of the secondary side can be decreased significantly. This article first presents the modal analysis of phase shift control (PSC) and DCC. Then, generalized state-space averaging (GSSA) modeling with PSC and the hybrid average modeling with DCC are performed. In addition, controllers' design for both strategies is conducted to achieve the constant output voltage. Finally, the eigenvalues' analysis is used to determine the stability region of the WPT system. The theoretical analysis has been validated by both simulation and experimental results.</description><subject>Capacitors</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Control methods</subject><subject>Dual-side inductor–capacitor–capacitor (LCC)</subject><subject>duty cycle control (DCC)</subject><subject>Eigenvalues</subject><subject>generalized state-space averaging (GSSA)</subject><subject>hybrid average modeling</subject><subject>Inductors</subject><subject>Integrated circuit modeling</subject><subject>Modal analysis</subject><subject>Modelling</subject><subject>Resonant frequency</subject><subject>stability</subject><subject>Stability analysis</subject><subject>Switches</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Topology</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><issn>2332-7782</issn><issn>2577-4212</issn><issn>2332-7782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOObuBW8CXnfmo2maS-nmBwwUV_EyZOmJdHTtTFKl_96ODfHqvBye9xx4ELqmZE4pUXdluZwzwuicU8Z5Ss7QZJwskTJn5__yJZqFsCWEUMGFotkE2UUfB1wMtgFcdG30XYPX0ZsInwN2nceL3jTJuq4Ar4oCv0HoWtPGA_sNPoLHdYs_ag8NhIBfu59xU3rTBjeG9RAi7MIVunCmCTA7zSl6f1iWxVOyenl8Lu5XiWUkiwmrhNqknGVSKUdsajlkLLciywSpNkYooJWElErHFFPW5sZZxZl0ShqghvEpuj3e3fvuq4cQ9bbrfTu-1CwTnEsuJB8pcqSs70Lw4PTe1zvjB02JPtjUo019sKlPNsfKzbFSA8AfrkaDQub8F8iUb7g</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Li, Huang</creator><creator>Xu, Junzhong</creator><creator>Gao, Fei</creator><creator>Zhang, Yun</creator><creator>Yang, Xijun</creator><creator>Tang, Houjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6098-3403</orcidid><orcidid>https://orcid.org/0000-0003-2496-3701</orcidid><orcidid>https://orcid.org/0000-0003-1980-9021</orcidid><orcidid>https://orcid.org/0000-0002-2043-9243</orcidid><orcidid>https://orcid.org/0000-0003-3483-767X</orcidid></search><sort><creationdate>20220601</creationdate><title>Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems</title><author>Li, Huang ; Xu, Junzhong ; Gao, Fei ; Zhang, Yun ; Yang, Xijun ; Tang, Houjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-2d59b4326799f0c4c3e628c56650dba59e1d7e417f2929cc8afc9327f97ae1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitors</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Control methods</topic><topic>Dual-side inductor–capacitor–capacitor (LCC)</topic><topic>duty cycle control (DCC)</topic><topic>Eigenvalues</topic><topic>generalized state-space averaging (GSSA)</topic><topic>hybrid average modeling</topic><topic>Inductors</topic><topic>Integrated circuit modeling</topic><topic>Modal analysis</topic><topic>Modelling</topic><topic>Resonant frequency</topic><topic>stability</topic><topic>Stability analysis</topic><topic>Switches</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Topology</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huang</creatorcontrib><creatorcontrib>Xu, Junzhong</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Yang, Xijun</creatorcontrib><creatorcontrib>Tang, Houjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on transportation electrification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Huang</au><au>Xu, Junzhong</au><au>Gao, Fei</au><au>Zhang, Yun</au><au>Yang, Xijun</au><au>Tang, Houjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems</atitle><jtitle>IEEE transactions on transportation electrification</jtitle><stitle>TTE</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>8</volume><issue>2</issue><spage>1944</spage><epage>1955</epage><pages>1944-1955</pages><issn>2332-7782</issn><issn>2577-4212</issn><eissn>2332-7782</eissn><coden>ITTEBP</coden><abstract>The dual-side inductor-capacitor-capacitor (LCC) topology circuit has been widely adopted in wireless power transfer (WPT) systems due to its constant output current characteristic. However, most conventional control methods need specific synchronization techniques between the primary and secondary sides to avoid the oscillation in the system, which increases the cost and control complexity. To solve this issue, this article proposes a new duty cycle control (DCC) strategy for a dual-side LCC resonant converter with a semibridgeless active rectifier (SAR). With such a control strategy, gate signals of the primary- and secondary-side circuits do not need to be synchronized, which could reduce the complexity and the cost of the WPT system. Besides, the switching frequency of the secondary side can be decreased significantly. This article first presents the modal analysis of phase shift control (PSC) and DCC. Then, generalized state-space averaging (GSSA) modeling with PSC and the hybrid average modeling with DCC are performed. In addition, controllers' design for both strategies is conducted to achieve the constant output voltage. Finally, the eigenvalues' analysis is used to determine the stability region of the WPT system. The theoretical analysis has been validated by both simulation and experimental results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TTE.2021.3123340</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6098-3403</orcidid><orcidid>https://orcid.org/0000-0003-2496-3701</orcidid><orcidid>https://orcid.org/0000-0003-1980-9021</orcidid><orcidid>https://orcid.org/0000-0002-2043-9243</orcidid><orcidid>https://orcid.org/0000-0003-3483-767X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2332-7782 |
ispartof | IEEE transactions on transportation electrification, 2022-06, Vol.8 (2), p.1944-1955 |
issn | 2332-7782 2577-4212 2332-7782 |
language | eng |
recordid | cdi_ieee_primary_9591578 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitors Circuits Complexity Control methods Dual-side inductor–capacitor–capacitor (LCC) duty cycle control (DCC) Eigenvalues generalized state-space averaging (GSSA) hybrid average modeling Inductors Integrated circuit modeling Modal analysis Modelling Resonant frequency stability Stability analysis Switches Synchronism Synchronization Topology wireless power transfer (WPT) Wireless power transmission |
title | Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duty%20Cycle%20Control%20Strategy%20for%20Dual-Side%20LCC%20Resonant%20Converter%20in%20Wireless%20Power%20Transfer%20Systems&rft.jtitle=IEEE%20transactions%20on%20transportation%20electrification&rft.au=Li,%20Huang&rft.date=2022-06-01&rft.volume=8&rft.issue=2&rft.spage=1944&rft.epage=1955&rft.pages=1944-1955&rft.issn=2332-7782&rft.eissn=2332-7782&rft.coden=ITTEBP&rft_id=info:doi/10.1109/TTE.2021.3123340&rft_dat=%3Cproquest_RIE%3E2653373573%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653373573&rft_id=info:pmid/&rft_ieee_id=9591578&rfr_iscdi=true |