Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems

The dual-side inductor-capacitor-capacitor (LCC) topology circuit has been widely adopted in wireless power transfer (WPT) systems due to its constant output current characteristic. However, most conventional control methods need specific synchronization techniques between the primary and secondary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on transportation electrification 2022-06, Vol.8 (2), p.1944-1955
Hauptverfasser: Li, Huang, Xu, Junzhong, Gao, Fei, Zhang, Yun, Yang, Xijun, Tang, Houjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1955
container_issue 2
container_start_page 1944
container_title IEEE transactions on transportation electrification
container_volume 8
creator Li, Huang
Xu, Junzhong
Gao, Fei
Zhang, Yun
Yang, Xijun
Tang, Houjun
description The dual-side inductor-capacitor-capacitor (LCC) topology circuit has been widely adopted in wireless power transfer (WPT) systems due to its constant output current characteristic. However, most conventional control methods need specific synchronization techniques between the primary and secondary sides to avoid the oscillation in the system, which increases the cost and control complexity. To solve this issue, this article proposes a new duty cycle control (DCC) strategy for a dual-side LCC resonant converter with a semibridgeless active rectifier (SAR). With such a control strategy, gate signals of the primary- and secondary-side circuits do not need to be synchronized, which could reduce the complexity and the cost of the WPT system. Besides, the switching frequency of the secondary side can be decreased significantly. This article first presents the modal analysis of phase shift control (PSC) and DCC. Then, generalized state-space averaging (GSSA) modeling with PSC and the hybrid average modeling with DCC are performed. In addition, controllers' design for both strategies is conducted to achieve the constant output voltage. Finally, the eigenvalues' analysis is used to determine the stability region of the WPT system. The theoretical analysis has been validated by both simulation and experimental results.
doi_str_mv 10.1109/TTE.2021.3123340
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9591578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9591578</ieee_id><sourcerecordid>2653373573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-2d59b4326799f0c4c3e628c56650dba59e1d7e417f2929cc8afc9327f97ae1a23</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOObuBW8CXnfmo2maS-nmBwwUV_EyZOmJdHTtTFKl_96ODfHqvBye9xx4ELqmZE4pUXdluZwzwuicU8Z5Ss7QZJwskTJn5__yJZqFsCWEUMGFotkE2UUfB1wMtgFcdG30XYPX0ZsInwN2nceL3jTJuq4Ar4oCv0HoWtPGA_sNPoLHdYs_ag8NhIBfu59xU3rTBjeG9RAi7MIVunCmCTA7zSl6f1iWxVOyenl8Lu5XiWUkiwmrhNqknGVSKUdsajlkLLciywSpNkYooJWElErHFFPW5sZZxZl0ShqghvEpuj3e3fvuq4cQ9bbrfTu-1CwTnEsuJB8pcqSs70Lw4PTe1zvjB02JPtjUo019sKlPNsfKzbFSA8AfrkaDQub8F8iUb7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653373573</pqid></control><display><type>article</type><title>Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Huang ; Xu, Junzhong ; Gao, Fei ; Zhang, Yun ; Yang, Xijun ; Tang, Houjun</creator><creatorcontrib>Li, Huang ; Xu, Junzhong ; Gao, Fei ; Zhang, Yun ; Yang, Xijun ; Tang, Houjun</creatorcontrib><description>The dual-side inductor-capacitor-capacitor (LCC) topology circuit has been widely adopted in wireless power transfer (WPT) systems due to its constant output current characteristic. However, most conventional control methods need specific synchronization techniques between the primary and secondary sides to avoid the oscillation in the system, which increases the cost and control complexity. To solve this issue, this article proposes a new duty cycle control (DCC) strategy for a dual-side LCC resonant converter with a semibridgeless active rectifier (SAR). With such a control strategy, gate signals of the primary- and secondary-side circuits do not need to be synchronized, which could reduce the complexity and the cost of the WPT system. Besides, the switching frequency of the secondary side can be decreased significantly. This article first presents the modal analysis of phase shift control (PSC) and DCC. Then, generalized state-space averaging (GSSA) modeling with PSC and the hybrid average modeling with DCC are performed. In addition, controllers' design for both strategies is conducted to achieve the constant output voltage. Finally, the eigenvalues' analysis is used to determine the stability region of the WPT system. The theoretical analysis has been validated by both simulation and experimental results.</description><identifier>ISSN: 2332-7782</identifier><identifier>ISSN: 2577-4212</identifier><identifier>EISSN: 2332-7782</identifier><identifier>DOI: 10.1109/TTE.2021.3123340</identifier><identifier>CODEN: ITTEBP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Capacitors ; Circuits ; Complexity ; Control methods ; Dual-side inductor–capacitor–capacitor (LCC) ; duty cycle control (DCC) ; Eigenvalues ; generalized state-space averaging (GSSA) ; hybrid average modeling ; Inductors ; Integrated circuit modeling ; Modal analysis ; Modelling ; Resonant frequency ; stability ; Stability analysis ; Switches ; Synchronism ; Synchronization ; Topology ; wireless power transfer (WPT) ; Wireless power transmission</subject><ispartof>IEEE transactions on transportation electrification, 2022-06, Vol.8 (2), p.1944-1955</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-2d59b4326799f0c4c3e628c56650dba59e1d7e417f2929cc8afc9327f97ae1a23</citedby><cites>FETCH-LOGICAL-c206t-2d59b4326799f0c4c3e628c56650dba59e1d7e417f2929cc8afc9327f97ae1a23</cites><orcidid>0000-0002-6098-3403 ; 0000-0003-2496-3701 ; 0000-0003-1980-9021 ; 0000-0002-2043-9243 ; 0000-0003-3483-767X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9591578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9591578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Huang</creatorcontrib><creatorcontrib>Xu, Junzhong</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Yang, Xijun</creatorcontrib><creatorcontrib>Tang, Houjun</creatorcontrib><title>Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems</title><title>IEEE transactions on transportation electrification</title><addtitle>TTE</addtitle><description>The dual-side inductor-capacitor-capacitor (LCC) topology circuit has been widely adopted in wireless power transfer (WPT) systems due to its constant output current characteristic. However, most conventional control methods need specific synchronization techniques between the primary and secondary sides to avoid the oscillation in the system, which increases the cost and control complexity. To solve this issue, this article proposes a new duty cycle control (DCC) strategy for a dual-side LCC resonant converter with a semibridgeless active rectifier (SAR). With such a control strategy, gate signals of the primary- and secondary-side circuits do not need to be synchronized, which could reduce the complexity and the cost of the WPT system. Besides, the switching frequency of the secondary side can be decreased significantly. This article first presents the modal analysis of phase shift control (PSC) and DCC. Then, generalized state-space averaging (GSSA) modeling with PSC and the hybrid average modeling with DCC are performed. In addition, controllers' design for both strategies is conducted to achieve the constant output voltage. Finally, the eigenvalues' analysis is used to determine the stability region of the WPT system. The theoretical analysis has been validated by both simulation and experimental results.</description><subject>Capacitors</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Control methods</subject><subject>Dual-side inductor–capacitor–capacitor (LCC)</subject><subject>duty cycle control (DCC)</subject><subject>Eigenvalues</subject><subject>generalized state-space averaging (GSSA)</subject><subject>hybrid average modeling</subject><subject>Inductors</subject><subject>Integrated circuit modeling</subject><subject>Modal analysis</subject><subject>Modelling</subject><subject>Resonant frequency</subject><subject>stability</subject><subject>Stability analysis</subject><subject>Switches</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Topology</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><issn>2332-7782</issn><issn>2577-4212</issn><issn>2332-7782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOObuBW8CXnfmo2maS-nmBwwUV_EyZOmJdHTtTFKl_96ODfHqvBye9xx4ELqmZE4pUXdluZwzwuicU8Z5Ss7QZJwskTJn5__yJZqFsCWEUMGFotkE2UUfB1wMtgFcdG30XYPX0ZsInwN2nceL3jTJuq4Ar4oCv0HoWtPGA_sNPoLHdYs_ag8NhIBfu59xU3rTBjeG9RAi7MIVunCmCTA7zSl6f1iWxVOyenl8Lu5XiWUkiwmrhNqknGVSKUdsajlkLLciywSpNkYooJWElErHFFPW5sZZxZl0ShqghvEpuj3e3fvuq4cQ9bbrfTu-1CwTnEsuJB8pcqSs70Lw4PTe1zvjB02JPtjUo019sKlPNsfKzbFSA8AfrkaDQub8F8iUb7g</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Li, Huang</creator><creator>Xu, Junzhong</creator><creator>Gao, Fei</creator><creator>Zhang, Yun</creator><creator>Yang, Xijun</creator><creator>Tang, Houjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6098-3403</orcidid><orcidid>https://orcid.org/0000-0003-2496-3701</orcidid><orcidid>https://orcid.org/0000-0003-1980-9021</orcidid><orcidid>https://orcid.org/0000-0002-2043-9243</orcidid><orcidid>https://orcid.org/0000-0003-3483-767X</orcidid></search><sort><creationdate>20220601</creationdate><title>Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems</title><author>Li, Huang ; Xu, Junzhong ; Gao, Fei ; Zhang, Yun ; Yang, Xijun ; Tang, Houjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-2d59b4326799f0c4c3e628c56650dba59e1d7e417f2929cc8afc9327f97ae1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitors</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Control methods</topic><topic>Dual-side inductor–capacitor–capacitor (LCC)</topic><topic>duty cycle control (DCC)</topic><topic>Eigenvalues</topic><topic>generalized state-space averaging (GSSA)</topic><topic>hybrid average modeling</topic><topic>Inductors</topic><topic>Integrated circuit modeling</topic><topic>Modal analysis</topic><topic>Modelling</topic><topic>Resonant frequency</topic><topic>stability</topic><topic>Stability analysis</topic><topic>Switches</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Topology</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huang</creatorcontrib><creatorcontrib>Xu, Junzhong</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Yang, Xijun</creatorcontrib><creatorcontrib>Tang, Houjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on transportation electrification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Huang</au><au>Xu, Junzhong</au><au>Gao, Fei</au><au>Zhang, Yun</au><au>Yang, Xijun</au><au>Tang, Houjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems</atitle><jtitle>IEEE transactions on transportation electrification</jtitle><stitle>TTE</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>8</volume><issue>2</issue><spage>1944</spage><epage>1955</epage><pages>1944-1955</pages><issn>2332-7782</issn><issn>2577-4212</issn><eissn>2332-7782</eissn><coden>ITTEBP</coden><abstract>The dual-side inductor-capacitor-capacitor (LCC) topology circuit has been widely adopted in wireless power transfer (WPT) systems due to its constant output current characteristic. However, most conventional control methods need specific synchronization techniques between the primary and secondary sides to avoid the oscillation in the system, which increases the cost and control complexity. To solve this issue, this article proposes a new duty cycle control (DCC) strategy for a dual-side LCC resonant converter with a semibridgeless active rectifier (SAR). With such a control strategy, gate signals of the primary- and secondary-side circuits do not need to be synchronized, which could reduce the complexity and the cost of the WPT system. Besides, the switching frequency of the secondary side can be decreased significantly. This article first presents the modal analysis of phase shift control (PSC) and DCC. Then, generalized state-space averaging (GSSA) modeling with PSC and the hybrid average modeling with DCC are performed. In addition, controllers' design for both strategies is conducted to achieve the constant output voltage. Finally, the eigenvalues' analysis is used to determine the stability region of the WPT system. The theoretical analysis has been validated by both simulation and experimental results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TTE.2021.3123340</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6098-3403</orcidid><orcidid>https://orcid.org/0000-0003-2496-3701</orcidid><orcidid>https://orcid.org/0000-0003-1980-9021</orcidid><orcidid>https://orcid.org/0000-0002-2043-9243</orcidid><orcidid>https://orcid.org/0000-0003-3483-767X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2332-7782
ispartof IEEE transactions on transportation electrification, 2022-06, Vol.8 (2), p.1944-1955
issn 2332-7782
2577-4212
2332-7782
language eng
recordid cdi_ieee_primary_9591578
source IEEE Electronic Library (IEL)
subjects Capacitors
Circuits
Complexity
Control methods
Dual-side inductor–capacitor–capacitor (LCC)
duty cycle control (DCC)
Eigenvalues
generalized state-space averaging (GSSA)
hybrid average modeling
Inductors
Integrated circuit modeling
Modal analysis
Modelling
Resonant frequency
stability
Stability analysis
Switches
Synchronism
Synchronization
Topology
wireless power transfer (WPT)
Wireless power transmission
title Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duty%20Cycle%20Control%20Strategy%20for%20Dual-Side%20LCC%20Resonant%20Converter%20in%20Wireless%20Power%20Transfer%20Systems&rft.jtitle=IEEE%20transactions%20on%20transportation%20electrification&rft.au=Li,%20Huang&rft.date=2022-06-01&rft.volume=8&rft.issue=2&rft.spage=1944&rft.epage=1955&rft.pages=1944-1955&rft.issn=2332-7782&rft.eissn=2332-7782&rft.coden=ITTEBP&rft_id=info:doi/10.1109/TTE.2021.3123340&rft_dat=%3Cproquest_RIE%3E2653373573%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653373573&rft_id=info:pmid/&rft_ieee_id=9591578&rfr_iscdi=true