PCA-based representation of color distributions for color-based image retrieval

In many color based image retrieval systems the color properties of an image are described by the histogram of the colors in the image. Color histograms are insensitive to small object distortions and easy to compute. Histogram based searches are however often inefficient for the large histogram siz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tran, L.V., Lenz, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 700 vol.2
container_issue
container_start_page 697
container_title
container_volume 2
creator Tran, L.V.
Lenz, R.
description In many color based image retrieval systems the color properties of an image are described by the histogram of the colors in the image. Color histograms are insensitive to small object distortions and easy to compute. Histogram based searches are however often inefficient for the large histogram sizes needed to represent color distributions. Therefore we introduce several new, PCA-based methods that provide efficient representations of color histograms and differences between two color histograms. We also investigate distance measures in the space of histograms which are defined by quadratic forms and which take into account the geometric structure of the underlying color space. We show that the combination of the quadratic forms based distance measure and the compression of the histogram information by difference based PCA-approximations provide new powerful and efficient retrieval algorithms for color based image retrieval.
doi_str_mv 10.1109/ICIP.2001.958589
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_958589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>958589</ieee_id><sourcerecordid>958589</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-9f8dd6f44e95a9f8702f9b84eb49ad607f597c813bbfc569ce406afb463e7a083</originalsourceid><addsrcrecordid>eNotj0trwzAQhAWlkDbNvfSkP2B3Zb2PwfRhCCSH5hwke1VU3DhIbqH_vmqTvQz7MbPsEHLPoGYM7GPXdru6AWC1lUYae0VuQRvgSjeSLcgq5w8oI6Qo6IZsd-268i7jQBOeEmY8zm6O05FOgfbTOCU6xDyn6L_-aKahkH9-ScVP944lWyz47cY7ch3cmHF10SXZPz-9ta_VZvvStetNFRmIubLBDIMKQqCVriwammC9EeiFdYMCHaTVvWHc-9BLZXsUoFzwQnHUDgxfkofz3YiIh1Mqb6Sfw7ky_wXTgU2u</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>PCA-based representation of color distributions for color-based image retrieval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tran, L.V. ; Lenz, R.</creator><creatorcontrib>Tran, L.V. ; Lenz, R.</creatorcontrib><description>In many color based image retrieval systems the color properties of an image are described by the histogram of the colors in the image. Color histograms are insensitive to small object distortions and easy to compute. Histogram based searches are however often inefficient for the large histogram sizes needed to represent color distributions. Therefore we introduce several new, PCA-based methods that provide efficient representations of color histograms and differences between two color histograms. We also investigate distance measures in the space of histograms which are defined by quadratic forms and which take into account the geometric structure of the underlying color space. We show that the combination of the quadratic forms based distance measure and the compression of the histogram information by difference based PCA-approximations provide new powerful and efficient retrieval algorithms for color based image retrieval.</description><identifier>ISBN: 0780367251</identifier><identifier>ISBN: 9780780367258</identifier><identifier>DOI: 10.1109/ICIP.2001.958589</identifier><language>eng</language><publisher>IEEE</publisher><subject>Color ; Distortion measurement ; Histograms ; Image coding ; Image databases ; Image retrieval ; Information retrieval ; Information systems ; Multimedia systems ; Principal component analysis</subject><ispartof>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001, Vol.2, p.697-700 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/958589$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/958589$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tran, L.V.</creatorcontrib><creatorcontrib>Lenz, R.</creatorcontrib><title>PCA-based representation of color distributions for color-based image retrieval</title><title>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)</title><addtitle>ICIP</addtitle><description>In many color based image retrieval systems the color properties of an image are described by the histogram of the colors in the image. Color histograms are insensitive to small object distortions and easy to compute. Histogram based searches are however often inefficient for the large histogram sizes needed to represent color distributions. Therefore we introduce several new, PCA-based methods that provide efficient representations of color histograms and differences between two color histograms. We also investigate distance measures in the space of histograms which are defined by quadratic forms and which take into account the geometric structure of the underlying color space. We show that the combination of the quadratic forms based distance measure and the compression of the histogram information by difference based PCA-approximations provide new powerful and efficient retrieval algorithms for color based image retrieval.</description><subject>Color</subject><subject>Distortion measurement</subject><subject>Histograms</subject><subject>Image coding</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Information systems</subject><subject>Multimedia systems</subject><subject>Principal component analysis</subject><isbn>0780367251</isbn><isbn>9780780367258</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0trwzAQhAWlkDbNvfSkP2B3Zb2PwfRhCCSH5hwke1VU3DhIbqH_vmqTvQz7MbPsEHLPoGYM7GPXdru6AWC1lUYae0VuQRvgSjeSLcgq5w8oI6Qo6IZsd-268i7jQBOeEmY8zm6O05FOgfbTOCU6xDyn6L_-aKahkH9-ScVP944lWyz47cY7ch3cmHF10SXZPz-9ta_VZvvStetNFRmIubLBDIMKQqCVriwammC9EeiFdYMCHaTVvWHc-9BLZXsUoFzwQnHUDgxfkofz3YiIh1Mqb6Sfw7ky_wXTgU2u</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Tran, L.V.</creator><creator>Lenz, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>PCA-based representation of color distributions for color-based image retrieval</title><author>Tran, L.V. ; Lenz, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-9f8dd6f44e95a9f8702f9b84eb49ad607f597c813bbfc569ce406afb463e7a083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Color</topic><topic>Distortion measurement</topic><topic>Histograms</topic><topic>Image coding</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Information systems</topic><topic>Multimedia systems</topic><topic>Principal component analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tran, L.V.</creatorcontrib><creatorcontrib>Lenz, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tran, L.V.</au><au>Lenz, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PCA-based representation of color distributions for color-based image retrieval</atitle><btitle>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)</btitle><stitle>ICIP</stitle><date>2001</date><risdate>2001</risdate><volume>2</volume><spage>697</spage><epage>700 vol.2</epage><pages>697-700 vol.2</pages><isbn>0780367251</isbn><isbn>9780780367258</isbn><abstract>In many color based image retrieval systems the color properties of an image are described by the histogram of the colors in the image. Color histograms are insensitive to small object distortions and easy to compute. Histogram based searches are however often inefficient for the large histogram sizes needed to represent color distributions. Therefore we introduce several new, PCA-based methods that provide efficient representations of color histograms and differences between two color histograms. We also investigate distance measures in the space of histograms which are defined by quadratic forms and which take into account the geometric structure of the underlying color space. We show that the combination of the quadratic forms based distance measure and the compression of the histogram information by difference based PCA-approximations provide new powerful and efficient retrieval algorithms for color based image retrieval.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2001.958589</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780367251
ispartof Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001, Vol.2, p.697-700 vol.2
issn
language eng
recordid cdi_ieee_primary_958589
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Color
Distortion measurement
Histograms
Image coding
Image databases
Image retrieval
Information retrieval
Information systems
Multimedia systems
Principal component analysis
title PCA-based representation of color distributions for color-based image retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PCA-based%20representation%20of%20color%20distributions%20for%20color-based%20image%20retrieval&rft.btitle=Proceedings%202001%20International%20Conference%20on%20Image%20Processing%20(Cat.%20No.01CH37205)&rft.au=Tran,%20L.V.&rft.date=2001&rft.volume=2&rft.spage=697&rft.epage=700%20vol.2&rft.pages=697-700%20vol.2&rft.isbn=0780367251&rft.isbn_list=9780780367258&rft_id=info:doi/10.1109/ICIP.2001.958589&rft_dat=%3Cieee_6IE%3E958589%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=958589&rfr_iscdi=true