Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation
This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which h...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2021-12, Vol.15 (6), p.1320-1331 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1331 |
---|---|
container_issue | 6 |
container_start_page | 1320 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 15 |
creator | Deng, Bin Fan, Yanrong Wang, Jiang Yang, Shuangming |
description | This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 μ J for a single operation. It can be applied in the field of brain-computer interface and intelligent robots. |
doi_str_mv | 10.1109/TBCAS.2021.3122549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9585371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9585371</ieee_id><sourcerecordid>2630391687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ed4db7a33428725e8f3da7771f404c99f3c6aaec08a9dc30b8bfcd8be0b7a29e3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhkVIadK0fyCBIOilF2_1aVnHzdJNA6ENTXorCFkaByeytZFsyv77arvbHHqagXnel-FB6JySBaVEf364Wi3vF4wwuuCUMSn0ETqlWpBKa02OdztnlZBCnqB3OT8RImum2Vt0wkWtNa_VKfr1A1wc85RmN_VxxLHDFq_nELb4ziYbAgTweDn7foppi-83_XM_PuJvMJdjGdPvmJ6xHT1e310v8c2wCTDAONld23v0prMhw4fDPEM_118eVl-r2-_XN6vlbeW4pFMFXvhWWc4FaxST0HTcW6UU7QQRTuuOu9pacKSx2jtO2qbtnG9aICXFNPAz9Gnfu0nxZYY8maHPDkKwI8Q5GyYbRYgoJgr68T_0Kc5pLN8ZVnPCNa0bVSi2p1yKOSfozCb1g01bQ4nZuTd_3Zude3NwX0KXh-q5HcC_Rv7JLsDFHugB4PWsZSO5ovwPvsqIog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630391687</pqid></control><display><type>article</type><title>Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Deng, Bin ; Fan, Yanrong ; Wang, Jiang ; Yang, Shuangming</creator><creatorcontrib>Deng, Bin ; Fan, Yanrong ; Wang, Jiang ; Yang, Shuangming</creatorcontrib><description>This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 μ J for a single operation. It can be applied in the field of brain-computer interface and intelligent robots.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2021.3122549</identifier><identifier>PMID: 34699367</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Auditory recognition ; Auditory system ; Bats ; Bayes Theorem ; Bayesian analysis ; Brain ; brain-inspired computing ; Cochlea ; Computer applications ; Computers ; Energy consumption ; Feature extraction ; Field programmable gate arrays ; Firing pattern ; FPGA ; Hearing ; Human-computer interface ; Humans ; Implants ; Neural networks ; Neural Networks, Computer ; Neuromorphic engineering ; Neurons ; Noise ; Power consumption ; Speech ; Speech recognition ; Spiking ; spiking neural network (SNN)</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2021-12, Vol.15 (6), p.1320-1331</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ed4db7a33428725e8f3da7771f404c99f3c6aaec08a9dc30b8bfcd8be0b7a29e3</citedby><cites>FETCH-LOGICAL-c351t-ed4db7a33428725e8f3da7771f404c99f3c6aaec08a9dc30b8bfcd8be0b7a29e3</cites><orcidid>0000-0002-8044-0860 ; 0000-0002-8094-8656 ; 0000-0002-2189-8003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9585371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9585371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34699367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Bin</creatorcontrib><creatorcontrib>Fan, Yanrong</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Yang, Shuangming</creatorcontrib><title>Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 μ J for a single operation. It can be applied in the field of brain-computer interface and intelligent robots.</description><subject>Auditory recognition</subject><subject>Auditory system</subject><subject>Bats</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Brain</subject><subject>brain-inspired computing</subject><subject>Cochlea</subject><subject>Computer applications</subject><subject>Computers</subject><subject>Energy consumption</subject><subject>Feature extraction</subject><subject>Field programmable gate arrays</subject><subject>Firing pattern</subject><subject>FPGA</subject><subject>Hearing</subject><subject>Human-computer interface</subject><subject>Humans</subject><subject>Implants</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuromorphic engineering</subject><subject>Neurons</subject><subject>Noise</subject><subject>Power consumption</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Spiking</subject><subject>spiking neural network (SNN)</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1r3DAQhkVIadK0fyCBIOilF2_1aVnHzdJNA6ENTXorCFkaByeytZFsyv77arvbHHqagXnel-FB6JySBaVEf364Wi3vF4wwuuCUMSn0ETqlWpBKa02OdztnlZBCnqB3OT8RImum2Vt0wkWtNa_VKfr1A1wc85RmN_VxxLHDFq_nELb4ziYbAgTweDn7foppi-83_XM_PuJvMJdjGdPvmJ6xHT1e310v8c2wCTDAONld23v0prMhw4fDPEM_118eVl-r2-_XN6vlbeW4pFMFXvhWWc4FaxST0HTcW6UU7QQRTuuOu9pacKSx2jtO2qbtnG9aICXFNPAz9Gnfu0nxZYY8maHPDkKwI8Q5GyYbRYgoJgr68T_0Kc5pLN8ZVnPCNa0bVSi2p1yKOSfozCb1g01bQ4nZuTd_3Zude3NwX0KXh-q5HcC_Rv7JLsDFHugB4PWsZSO5ovwPvsqIog</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Deng, Bin</creator><creator>Fan, Yanrong</creator><creator>Wang, Jiang</creator><creator>Yang, Shuangming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8044-0860</orcidid><orcidid>https://orcid.org/0000-0002-8094-8656</orcidid><orcidid>https://orcid.org/0000-0002-2189-8003</orcidid></search><sort><creationdate>20211201</creationdate><title>Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation</title><author>Deng, Bin ; Fan, Yanrong ; Wang, Jiang ; Yang, Shuangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ed4db7a33428725e8f3da7771f404c99f3c6aaec08a9dc30b8bfcd8be0b7a29e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Auditory recognition</topic><topic>Auditory system</topic><topic>Bats</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Brain</topic><topic>brain-inspired computing</topic><topic>Cochlea</topic><topic>Computer applications</topic><topic>Computers</topic><topic>Energy consumption</topic><topic>Feature extraction</topic><topic>Field programmable gate arrays</topic><topic>Firing pattern</topic><topic>FPGA</topic><topic>Hearing</topic><topic>Human-computer interface</topic><topic>Humans</topic><topic>Implants</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuromorphic engineering</topic><topic>Neurons</topic><topic>Noise</topic><topic>Power consumption</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Spiking</topic><topic>spiking neural network (SNN)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Bin</creatorcontrib><creatorcontrib>Fan, Yanrong</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Yang, Shuangming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, Bin</au><au>Fan, Yanrong</au><au>Wang, Jiang</au><au>Yang, Shuangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>1320</spage><epage>1331</epage><pages>1320-1331</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 μ J for a single operation. It can be applied in the field of brain-computer interface and intelligent robots.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34699367</pmid><doi>10.1109/TBCAS.2021.3122549</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8044-0860</orcidid><orcidid>https://orcid.org/0000-0002-8094-8656</orcidid><orcidid>https://orcid.org/0000-0002-2189-8003</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2021-12, Vol.15 (6), p.1320-1331 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_ieee_primary_9585371 |
source | IEEE Electronic Library (IEL) |
subjects | Auditory recognition Auditory system Bats Bayes Theorem Bayesian analysis Brain brain-inspired computing Cochlea Computer applications Computers Energy consumption Feature extraction Field programmable gate arrays Firing pattern FPGA Hearing Human-computer interface Humans Implants Neural networks Neural Networks, Computer Neuromorphic engineering Neurons Noise Power consumption Speech Speech recognition Spiking spiking neural network (SNN) |
title | Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20a%20Fully%20Paralleled%20Auditory%20Spiking%20Neural%20Network%20and%20FPGA%20Implementation&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Deng,%20Bin&rft.date=2021-12-01&rft.volume=15&rft.issue=6&rft.spage=1320&rft.epage=1331&rft.pages=1320-1331&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2021.3122549&rft_dat=%3Cproquest_RIE%3E2630391687%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630391687&rft_id=info:pmid/34699367&rft_ieee_id=9585371&rfr_iscdi=true |