Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation

This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2021-12, Vol.15 (6), p.1320-1331
Hauptverfasser: Deng, Bin, Fan, Yanrong, Wang, Jiang, Yang, Shuangming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1331
container_issue 6
container_start_page 1320
container_title IEEE transactions on biomedical circuits and systems
container_volume 15
creator Deng, Bin
Fan, Yanrong
Wang, Jiang
Yang, Shuangming
description This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 μ J for a single operation. It can be applied in the field of brain-computer interface and intelligent robots.
doi_str_mv 10.1109/TBCAS.2021.3122549
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9585371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9585371</ieee_id><sourcerecordid>2630391687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ed4db7a33428725e8f3da7771f404c99f3c6aaec08a9dc30b8bfcd8be0b7a29e3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhkVIadK0fyCBIOilF2_1aVnHzdJNA6ENTXorCFkaByeytZFsyv77arvbHHqagXnel-FB6JySBaVEf364Wi3vF4wwuuCUMSn0ETqlWpBKa02OdztnlZBCnqB3OT8RImum2Vt0wkWtNa_VKfr1A1wc85RmN_VxxLHDFq_nELb4ziYbAgTweDn7foppi-83_XM_PuJvMJdjGdPvmJ6xHT1e310v8c2wCTDAONld23v0prMhw4fDPEM_118eVl-r2-_XN6vlbeW4pFMFXvhWWc4FaxST0HTcW6UU7QQRTuuOu9pacKSx2jtO2qbtnG9aICXFNPAz9Gnfu0nxZYY8maHPDkKwI8Q5GyYbRYgoJgr68T_0Kc5pLN8ZVnPCNa0bVSi2p1yKOSfozCb1g01bQ4nZuTd_3Zude3NwX0KXh-q5HcC_Rv7JLsDFHugB4PWsZSO5ovwPvsqIog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630391687</pqid></control><display><type>article</type><title>Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Deng, Bin ; Fan, Yanrong ; Wang, Jiang ; Yang, Shuangming</creator><creatorcontrib>Deng, Bin ; Fan, Yanrong ; Wang, Jiang ; Yang, Shuangming</creatorcontrib><description>This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 μ J for a single operation. It can be applied in the field of brain-computer interface and intelligent robots.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2021.3122549</identifier><identifier>PMID: 34699367</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Auditory recognition ; Auditory system ; Bats ; Bayes Theorem ; Bayesian analysis ; Brain ; brain-inspired computing ; Cochlea ; Computer applications ; Computers ; Energy consumption ; Feature extraction ; Field programmable gate arrays ; Firing pattern ; FPGA ; Hearing ; Human-computer interface ; Humans ; Implants ; Neural networks ; Neural Networks, Computer ; Neuromorphic engineering ; Neurons ; Noise ; Power consumption ; Speech ; Speech recognition ; Spiking ; spiking neural network (SNN)</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2021-12, Vol.15 (6), p.1320-1331</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ed4db7a33428725e8f3da7771f404c99f3c6aaec08a9dc30b8bfcd8be0b7a29e3</citedby><cites>FETCH-LOGICAL-c351t-ed4db7a33428725e8f3da7771f404c99f3c6aaec08a9dc30b8bfcd8be0b7a29e3</cites><orcidid>0000-0002-8044-0860 ; 0000-0002-8094-8656 ; 0000-0002-2189-8003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9585371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9585371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34699367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Bin</creatorcontrib><creatorcontrib>Fan, Yanrong</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Yang, Shuangming</creatorcontrib><title>Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 μ J for a single operation. It can be applied in the field of brain-computer interface and intelligent robots.</description><subject>Auditory recognition</subject><subject>Auditory system</subject><subject>Bats</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Brain</subject><subject>brain-inspired computing</subject><subject>Cochlea</subject><subject>Computer applications</subject><subject>Computers</subject><subject>Energy consumption</subject><subject>Feature extraction</subject><subject>Field programmable gate arrays</subject><subject>Firing pattern</subject><subject>FPGA</subject><subject>Hearing</subject><subject>Human-computer interface</subject><subject>Humans</subject><subject>Implants</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuromorphic engineering</subject><subject>Neurons</subject><subject>Noise</subject><subject>Power consumption</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Spiking</subject><subject>spiking neural network (SNN)</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1r3DAQhkVIadK0fyCBIOilF2_1aVnHzdJNA6ENTXorCFkaByeytZFsyv77arvbHHqagXnel-FB6JySBaVEf364Wi3vF4wwuuCUMSn0ETqlWpBKa02OdztnlZBCnqB3OT8RImum2Vt0wkWtNa_VKfr1A1wc85RmN_VxxLHDFq_nELb4ziYbAgTweDn7foppi-83_XM_PuJvMJdjGdPvmJ6xHT1e310v8c2wCTDAONld23v0prMhw4fDPEM_118eVl-r2-_XN6vlbeW4pFMFXvhWWc4FaxST0HTcW6UU7QQRTuuOu9pacKSx2jtO2qbtnG9aICXFNPAz9Gnfu0nxZYY8maHPDkKwI8Q5GyYbRYgoJgr68T_0Kc5pLN8ZVnPCNa0bVSi2p1yKOSfozCb1g01bQ4nZuTd_3Zude3NwX0KXh-q5HcC_Rv7JLsDFHugB4PWsZSO5ovwPvsqIog</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Deng, Bin</creator><creator>Fan, Yanrong</creator><creator>Wang, Jiang</creator><creator>Yang, Shuangming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8044-0860</orcidid><orcidid>https://orcid.org/0000-0002-8094-8656</orcidid><orcidid>https://orcid.org/0000-0002-2189-8003</orcidid></search><sort><creationdate>20211201</creationdate><title>Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation</title><author>Deng, Bin ; Fan, Yanrong ; Wang, Jiang ; Yang, Shuangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ed4db7a33428725e8f3da7771f404c99f3c6aaec08a9dc30b8bfcd8be0b7a29e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Auditory recognition</topic><topic>Auditory system</topic><topic>Bats</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Brain</topic><topic>brain-inspired computing</topic><topic>Cochlea</topic><topic>Computer applications</topic><topic>Computers</topic><topic>Energy consumption</topic><topic>Feature extraction</topic><topic>Field programmable gate arrays</topic><topic>Firing pattern</topic><topic>FPGA</topic><topic>Hearing</topic><topic>Human-computer interface</topic><topic>Humans</topic><topic>Implants</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuromorphic engineering</topic><topic>Neurons</topic><topic>Noise</topic><topic>Power consumption</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Spiking</topic><topic>spiking neural network (SNN)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Bin</creatorcontrib><creatorcontrib>Fan, Yanrong</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Yang, Shuangming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, Bin</au><au>Fan, Yanrong</au><au>Wang, Jiang</au><au>Yang, Shuangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>1320</spage><epage>1331</epage><pages>1320-1331</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 μ J for a single operation. It can be applied in the field of brain-computer interface and intelligent robots.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34699367</pmid><doi>10.1109/TBCAS.2021.3122549</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8044-0860</orcidid><orcidid>https://orcid.org/0000-0002-8094-8656</orcidid><orcidid>https://orcid.org/0000-0002-2189-8003</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2021-12, Vol.15 (6), p.1320-1331
issn 1932-4545
1940-9990
language eng
recordid cdi_ieee_primary_9585371
source IEEE Electronic Library (IEL)
subjects Auditory recognition
Auditory system
Bats
Bayes Theorem
Bayesian analysis
Brain
brain-inspired computing
Cochlea
Computer applications
Computers
Energy consumption
Feature extraction
Field programmable gate arrays
Firing pattern
FPGA
Hearing
Human-computer interface
Humans
Implants
Neural networks
Neural Networks, Computer
Neuromorphic engineering
Neurons
Noise
Power consumption
Speech
Speech recognition
Spiking
spiking neural network (SNN)
title Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20a%20Fully%20Paralleled%20Auditory%20Spiking%20Neural%20Network%20and%20FPGA%20Implementation&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Deng,%20Bin&rft.date=2021-12-01&rft.volume=15&rft.issue=6&rft.spage=1320&rft.epage=1331&rft.pages=1320-1331&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2021.3122549&rft_dat=%3Cproquest_RIE%3E2630391687%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630391687&rft_id=info:pmid/34699367&rft_ieee_id=9585371&rfr_iscdi=true