Helical CT of von Hippel-Lindau: semi-automated segmentation of renal lesions

In the setting of von Hippel-Lindau disease, accurate quantitation of kidney lesions is important for genetic research. Unfortunately, fully automated quantitation is difficult because the lesion boundaries are complex. Therefore, we developed a method to semi-automate the quantitation of these rena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Summers, R.M., Agcaoili, C.M.L., McAuliffe, M.J., Dalal, S.S., Yim, P.J., Choyke, P.L., Walther, M.M., Linehan, W.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296 vol.2
container_issue
container_start_page 293
container_title
container_volume 2
creator Summers, R.M.
Agcaoili, C.M.L.
McAuliffe, M.J.
Dalal, S.S.
Yim, P.J.
Choyke, P.L.
Walther, M.M.
Linehan, W.M.
description In the setting of von Hippel-Lindau disease, accurate quantitation of kidney lesions is important for genetic research. Unfortunately, fully automated quantitation is difficult because the lesion boundaries are complex. Therefore, we developed a method to semi-automate the quantitation of these renal lesions. We studied helical CT scans of 10 kidneys from 8 patients with von Hippel-Lindau disease. The kidneys were segmented from surrounding structures using an interactive marker-controlled watershed algorithm. Renal lesions (cysts and solid tumors) were identified using thresholding and then characterized by size using mathematical morphology and granulometry. There were 50 cysts and 16 solid lesions. The mean (/spl plusmn/ sd) numbers of interior and exterior manually placed contours required to perform a complete watershed segmentation of the kidneys were 2.2 /spl plusmn/1.2 and 1.2 /spl plusmn/0.6, respectively. The mean difference between the watershed and manual methods of computing renal volume was 13 /spl plusmn/18 mL (5 /spl plusmn/2% of total renal volume) and is not clinically significant. There was no significant difference between volumes of renal lesions measured manually and using the semi-automated method (p > 0.3).
doi_str_mv 10.1109/ICIP.2001.958485
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_958485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>958485</ieee_id><sourcerecordid>958485</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-d61f9001a31c4e7c1eb4367969deea947e6f4ed58a7923ed6cd5f9dbecbddccf3</originalsourceid><addsrcrecordid>eNotj0tLxDAUhQMiqOPsxVX_QGvSvBp3UtQWKjOLcT2kyY1E0gdNR_DfG5m5m8s5nHP5LkIPBBeEYPXU1u2-KDEmheIVq_gVusOywlTIkpMbtI3xG6dhnCXrFn00ELzRIasP2eSyn2nMGj_PEPLOj1afnrMIg8_1aZ0GvYJN8muAcdWrT9HUWGBM7QAx6XiPrp0OEbaXvUGfb6-Husm73Xtbv3S5J5ituRXEqYSoKTEMpCHQ_9MooSyAVkyCcAwsr7RUJQUrjOVO2R5Mb60xjm7Q4_muB4DjvPhBL7_H88P0D49STRc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Helical CT of von Hippel-Lindau: semi-automated segmentation of renal lesions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Summers, R.M. ; Agcaoili, C.M.L. ; McAuliffe, M.J. ; Dalal, S.S. ; Yim, P.J. ; Choyke, P.L. ; Walther, M.M. ; Linehan, W.M.</creator><creatorcontrib>Summers, R.M. ; Agcaoili, C.M.L. ; McAuliffe, M.J. ; Dalal, S.S. ; Yim, P.J. ; Choyke, P.L. ; Walther, M.M. ; Linehan, W.M.</creatorcontrib><description>In the setting of von Hippel-Lindau disease, accurate quantitation of kidney lesions is important for genetic research. Unfortunately, fully automated quantitation is difficult because the lesion boundaries are complex. Therefore, we developed a method to semi-automate the quantitation of these renal lesions. We studied helical CT scans of 10 kidneys from 8 patients with von Hippel-Lindau disease. The kidneys were segmented from surrounding structures using an interactive marker-controlled watershed algorithm. Renal lesions (cysts and solid tumors) were identified using thresholding and then characterized by size using mathematical morphology and granulometry. There were 50 cysts and 16 solid lesions. The mean (/spl plusmn/ sd) numbers of interior and exterior manually placed contours required to perform a complete watershed segmentation of the kidneys were 2.2 /spl plusmn/1.2 and 1.2 /spl plusmn/0.6, respectively. The mean difference between the watershed and manual methods of computing renal volume was 13 /spl plusmn/18 mL (5 /spl plusmn/2% of total renal volume) and is not clinically significant. There was no significant difference between volumes of renal lesions measured manually and using the semi-automated method (p &gt; 0.3).</description><identifier>ISBN: 0780367251</identifier><identifier>ISBN: 9780780367258</identifier><identifier>DOI: 10.1109/ICIP.2001.958485</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computed tomography ; Diseases ; Genetics ; Image analysis ; Image edge detection ; Image processing ; Lesions ; Neoplasms ; Radiology ; Solids</subject><ispartof>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001, Vol.2, p.293-296 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/958485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/958485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Summers, R.M.</creatorcontrib><creatorcontrib>Agcaoili, C.M.L.</creatorcontrib><creatorcontrib>McAuliffe, M.J.</creatorcontrib><creatorcontrib>Dalal, S.S.</creatorcontrib><creatorcontrib>Yim, P.J.</creatorcontrib><creatorcontrib>Choyke, P.L.</creatorcontrib><creatorcontrib>Walther, M.M.</creatorcontrib><creatorcontrib>Linehan, W.M.</creatorcontrib><title>Helical CT of von Hippel-Lindau: semi-automated segmentation of renal lesions</title><title>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)</title><addtitle>ICIP</addtitle><description>In the setting of von Hippel-Lindau disease, accurate quantitation of kidney lesions is important for genetic research. Unfortunately, fully automated quantitation is difficult because the lesion boundaries are complex. Therefore, we developed a method to semi-automate the quantitation of these renal lesions. We studied helical CT scans of 10 kidneys from 8 patients with von Hippel-Lindau disease. The kidneys were segmented from surrounding structures using an interactive marker-controlled watershed algorithm. Renal lesions (cysts and solid tumors) were identified using thresholding and then characterized by size using mathematical morphology and granulometry. There were 50 cysts and 16 solid lesions. The mean (/spl plusmn/ sd) numbers of interior and exterior manually placed contours required to perform a complete watershed segmentation of the kidneys were 2.2 /spl plusmn/1.2 and 1.2 /spl plusmn/0.6, respectively. The mean difference between the watershed and manual methods of computing renal volume was 13 /spl plusmn/18 mL (5 /spl plusmn/2% of total renal volume) and is not clinically significant. There was no significant difference between volumes of renal lesions measured manually and using the semi-automated method (p &gt; 0.3).</description><subject>Computed tomography</subject><subject>Diseases</subject><subject>Genetics</subject><subject>Image analysis</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Lesions</subject><subject>Neoplasms</subject><subject>Radiology</subject><subject>Solids</subject><isbn>0780367251</isbn><isbn>9780780367258</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLxDAUhQMiqOPsxVX_QGvSvBp3UtQWKjOLcT2kyY1E0gdNR_DfG5m5m8s5nHP5LkIPBBeEYPXU1u2-KDEmheIVq_gVusOywlTIkpMbtI3xG6dhnCXrFn00ELzRIasP2eSyn2nMGj_PEPLOj1afnrMIg8_1aZ0GvYJN8muAcdWrT9HUWGBM7QAx6XiPrp0OEbaXvUGfb6-Husm73Xtbv3S5J5ituRXEqYSoKTEMpCHQ_9MooSyAVkyCcAwsr7RUJQUrjOVO2R5Mb60xjm7Q4_muB4DjvPhBL7_H88P0D49STRc</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Summers, R.M.</creator><creator>Agcaoili, C.M.L.</creator><creator>McAuliffe, M.J.</creator><creator>Dalal, S.S.</creator><creator>Yim, P.J.</creator><creator>Choyke, P.L.</creator><creator>Walther, M.M.</creator><creator>Linehan, W.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Helical CT of von Hippel-Lindau: semi-automated segmentation of renal lesions</title><author>Summers, R.M. ; Agcaoili, C.M.L. ; McAuliffe, M.J. ; Dalal, S.S. ; Yim, P.J. ; Choyke, P.L. ; Walther, M.M. ; Linehan, W.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-d61f9001a31c4e7c1eb4367969deea947e6f4ed58a7923ed6cd5f9dbecbddccf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Computed tomography</topic><topic>Diseases</topic><topic>Genetics</topic><topic>Image analysis</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Lesions</topic><topic>Neoplasms</topic><topic>Radiology</topic><topic>Solids</topic><toplevel>online_resources</toplevel><creatorcontrib>Summers, R.M.</creatorcontrib><creatorcontrib>Agcaoili, C.M.L.</creatorcontrib><creatorcontrib>McAuliffe, M.J.</creatorcontrib><creatorcontrib>Dalal, S.S.</creatorcontrib><creatorcontrib>Yim, P.J.</creatorcontrib><creatorcontrib>Choyke, P.L.</creatorcontrib><creatorcontrib>Walther, M.M.</creatorcontrib><creatorcontrib>Linehan, W.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Summers, R.M.</au><au>Agcaoili, C.M.L.</au><au>McAuliffe, M.J.</au><au>Dalal, S.S.</au><au>Yim, P.J.</au><au>Choyke, P.L.</au><au>Walther, M.M.</au><au>Linehan, W.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Helical CT of von Hippel-Lindau: semi-automated segmentation of renal lesions</atitle><btitle>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)</btitle><stitle>ICIP</stitle><date>2001</date><risdate>2001</risdate><volume>2</volume><spage>293</spage><epage>296 vol.2</epage><pages>293-296 vol.2</pages><isbn>0780367251</isbn><isbn>9780780367258</isbn><abstract>In the setting of von Hippel-Lindau disease, accurate quantitation of kidney lesions is important for genetic research. Unfortunately, fully automated quantitation is difficult because the lesion boundaries are complex. Therefore, we developed a method to semi-automate the quantitation of these renal lesions. We studied helical CT scans of 10 kidneys from 8 patients with von Hippel-Lindau disease. The kidneys were segmented from surrounding structures using an interactive marker-controlled watershed algorithm. Renal lesions (cysts and solid tumors) were identified using thresholding and then characterized by size using mathematical morphology and granulometry. There were 50 cysts and 16 solid lesions. The mean (/spl plusmn/ sd) numbers of interior and exterior manually placed contours required to perform a complete watershed segmentation of the kidneys were 2.2 /spl plusmn/1.2 and 1.2 /spl plusmn/0.6, respectively. The mean difference between the watershed and manual methods of computing renal volume was 13 /spl plusmn/18 mL (5 /spl plusmn/2% of total renal volume) and is not clinically significant. There was no significant difference between volumes of renal lesions measured manually and using the semi-automated method (p &gt; 0.3).</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2001.958485</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780367251
ispartof Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001, Vol.2, p.293-296 vol.2
issn
language eng
recordid cdi_ieee_primary_958485
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computed tomography
Diseases
Genetics
Image analysis
Image edge detection
Image processing
Lesions
Neoplasms
Radiology
Solids
title Helical CT of von Hippel-Lindau: semi-automated segmentation of renal lesions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Helical%20CT%20of%20von%20Hippel-Lindau:%20semi-automated%20segmentation%20of%20renal%20lesions&rft.btitle=Proceedings%202001%20International%20Conference%20on%20Image%20Processing%20(Cat.%20No.01CH37205)&rft.au=Summers,%20R.M.&rft.date=2001&rft.volume=2&rft.spage=293&rft.epage=296%20vol.2&rft.pages=293-296%20vol.2&rft.isbn=0780367251&rft.isbn_list=9780780367258&rft_id=info:doi/10.1109/ICIP.2001.958485&rft_dat=%3Cieee_6IE%3E958485%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=958485&rfr_iscdi=true