Dense Dual-Attention Network for Light Field Image Super-Resolution
Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2022-07, Vol.32 (7), p.4431-4443 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4443 |
---|---|
container_issue | 7 |
container_start_page | 4431 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 32 |
creator | Mo, Yu Wang, Yingqian Xiao, Chao Yang, Jungang An, Wei |
description | Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previous layers can be weakened as the depth of network increases. In this paper, we propose a dense dual-attention network for LF image SR. Specifically, we design a view attention module to adaptively capture discriminative features across different views and a channel attention module to selectively focus on informative information across all channels. These two modules are fed to two branches and stacked separately in a chain structure for adaptive fusion of hierarchical features and distillation of valid information. Meanwhile, a dense connection is used to fully exploit multi-level information. Extensive experiments demonstrate that our dense dual-attention mechanism can capture informative information across views and channels to improve SR performance. Comparative results show the advantage of our method over state-of-the-art methods on public datasets. |
doi_str_mv | 10.1109/TCSVT.2021.3121679 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9583270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9583270</ieee_id><sourcerecordid>2682915279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-cee1b8dfa0633c4f1bd4572829ca0292d4003c5d83994854fc1cf89b4118c7483</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwA3CJxDnFu7Yb-1ilFJAqkGjhaqXOpqSkSbETIf6elFacdg7zZqXH2DXwEQA3d8t08b4cIUcYCUAYJ-aEDUApHSNyddpnriDWCOqcXYSw4RyklsmApVOqA0XTLqviSdtS3ZZNHT1T-934z6hofDQv1x9tNCupyqOnbbamaNHtyMevFJqq29cv2VmRVYGujnfI3mb3y_Qxnr88PKWTeezQqDZ2RLDSeZHxsRBOFrDKpUpQo3EZR4O55Fw4lWthjNRKFg5coc1KAmiXSC2G7Pawu_PNV0ehtZum83X_0uK4nwGFielbeGg534TgqbA7X24z_2OB270s-yfL7mXZo6weujlAJRH9A0ZpgQkXvyKfZIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682915279</pqid></control><display><type>article</type><title>Dense Dual-Attention Network for Light Field Image Super-Resolution</title><source>IEEE Electronic Library (IEL)</source><creator>Mo, Yu ; Wang, Yingqian ; Xiao, Chao ; Yang, Jungang ; An, Wei</creator><creatorcontrib>Mo, Yu ; Wang, Yingqian ; Xiao, Chao ; Yang, Jungang ; An, Wei</creatorcontrib><description>Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previous layers can be weakened as the depth of network increases. In this paper, we propose a dense dual-attention network for LF image SR. Specifically, we design a view attention module to adaptively capture discriminative features across different views and a channel attention module to selectively focus on informative information across all channels. These two modules are fed to two branches and stacked separately in a chain structure for adaptive fusion of hierarchical features and distillation of valid information. Meanwhile, a dense connection is used to fully exploit multi-level information. Extensive experiments demonstrate that our dense dual-attention mechanism can capture informative information across views and channels to improve SR performance. Comparative results show the advantage of our method over state-of-the-art methods on public datasets.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2021.3121679</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; attention mechanism ; Chain branching ; Channels ; Convolutional neural networks ; Correlation ; Data mining ; dense connection ; Distillation ; Feature extraction ; Image resolution ; Light field ; Modules ; Performance enhancement ; Spatial data ; Spatial resolution ; super-resolution ; Superresolution</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-07, Vol.32 (7), p.4431-4443</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-cee1b8dfa0633c4f1bd4572829ca0292d4003c5d83994854fc1cf89b4118c7483</citedby><cites>FETCH-LOGICAL-c295t-cee1b8dfa0633c4f1bd4572829ca0292d4003c5d83994854fc1cf89b4118c7483</cites><orcidid>0000-0002-5805-3442 ; 0000-0002-9666-8894 ; 0000-0002-9081-6227 ; 0000-0002-3127-8705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9583270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9583270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mo, Yu</creatorcontrib><creatorcontrib>Wang, Yingqian</creatorcontrib><creatorcontrib>Xiao, Chao</creatorcontrib><creatorcontrib>Yang, Jungang</creatorcontrib><creatorcontrib>An, Wei</creatorcontrib><title>Dense Dual-Attention Network for Light Field Image Super-Resolution</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previous layers can be weakened as the depth of network increases. In this paper, we propose a dense dual-attention network for LF image SR. Specifically, we design a view attention module to adaptively capture discriminative features across different views and a channel attention module to selectively focus on informative information across all channels. These two modules are fed to two branches and stacked separately in a chain structure for adaptive fusion of hierarchical features and distillation of valid information. Meanwhile, a dense connection is used to fully exploit multi-level information. Extensive experiments demonstrate that our dense dual-attention mechanism can capture informative information across views and channels to improve SR performance. Comparative results show the advantage of our method over state-of-the-art methods on public datasets.</description><subject>Adaptation models</subject><subject>attention mechanism</subject><subject>Chain branching</subject><subject>Channels</subject><subject>Convolutional neural networks</subject><subject>Correlation</subject><subject>Data mining</subject><subject>dense connection</subject><subject>Distillation</subject><subject>Feature extraction</subject><subject>Image resolution</subject><subject>Light field</subject><subject>Modules</subject><subject>Performance enhancement</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><subject>super-resolution</subject><subject>Superresolution</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRC0EEqXwA3CJxDnFu7Yb-1ilFJAqkGjhaqXOpqSkSbETIf6elFacdg7zZqXH2DXwEQA3d8t08b4cIUcYCUAYJ-aEDUApHSNyddpnriDWCOqcXYSw4RyklsmApVOqA0XTLqviSdtS3ZZNHT1T-934z6hofDQv1x9tNCupyqOnbbamaNHtyMevFJqq29cv2VmRVYGujnfI3mb3y_Qxnr88PKWTeezQqDZ2RLDSeZHxsRBOFrDKpUpQo3EZR4O55Fw4lWthjNRKFg5coc1KAmiXSC2G7Pawu_PNV0ehtZum83X_0uK4nwGFielbeGg534TgqbA7X24z_2OB270s-yfL7mXZo6weujlAJRH9A0ZpgQkXvyKfZIg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Mo, Yu</creator><creator>Wang, Yingqian</creator><creator>Xiao, Chao</creator><creator>Yang, Jungang</creator><creator>An, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5805-3442</orcidid><orcidid>https://orcid.org/0000-0002-9666-8894</orcidid><orcidid>https://orcid.org/0000-0002-9081-6227</orcidid><orcidid>https://orcid.org/0000-0002-3127-8705</orcidid></search><sort><creationdate>20220701</creationdate><title>Dense Dual-Attention Network for Light Field Image Super-Resolution</title><author>Mo, Yu ; Wang, Yingqian ; Xiao, Chao ; Yang, Jungang ; An, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-cee1b8dfa0633c4f1bd4572829ca0292d4003c5d83994854fc1cf89b4118c7483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>attention mechanism</topic><topic>Chain branching</topic><topic>Channels</topic><topic>Convolutional neural networks</topic><topic>Correlation</topic><topic>Data mining</topic><topic>dense connection</topic><topic>Distillation</topic><topic>Feature extraction</topic><topic>Image resolution</topic><topic>Light field</topic><topic>Modules</topic><topic>Performance enhancement</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><topic>super-resolution</topic><topic>Superresolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mo, Yu</creatorcontrib><creatorcontrib>Wang, Yingqian</creatorcontrib><creatorcontrib>Xiao, Chao</creatorcontrib><creatorcontrib>Yang, Jungang</creatorcontrib><creatorcontrib>An, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mo, Yu</au><au>Wang, Yingqian</au><au>Xiao, Chao</au><au>Yang, Jungang</au><au>An, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dense Dual-Attention Network for Light Field Image Super-Resolution</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>32</volume><issue>7</issue><spage>4431</spage><epage>4443</epage><pages>4431-4443</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previous layers can be weakened as the depth of network increases. In this paper, we propose a dense dual-attention network for LF image SR. Specifically, we design a view attention module to adaptively capture discriminative features across different views and a channel attention module to selectively focus on informative information across all channels. These two modules are fed to two branches and stacked separately in a chain structure for adaptive fusion of hierarchical features and distillation of valid information. Meanwhile, a dense connection is used to fully exploit multi-level information. Extensive experiments demonstrate that our dense dual-attention mechanism can capture informative information across views and channels to improve SR performance. Comparative results show the advantage of our method over state-of-the-art methods on public datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2021.3121679</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5805-3442</orcidid><orcidid>https://orcid.org/0000-0002-9666-8894</orcidid><orcidid>https://orcid.org/0000-0002-9081-6227</orcidid><orcidid>https://orcid.org/0000-0002-3127-8705</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2022-07, Vol.32 (7), p.4431-4443 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_9583270 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models attention mechanism Chain branching Channels Convolutional neural networks Correlation Data mining dense connection Distillation Feature extraction Image resolution Light field Modules Performance enhancement Spatial data Spatial resolution super-resolution Superresolution |
title | Dense Dual-Attention Network for Light Field Image Super-Resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dense%20Dual-Attention%20Network%20for%20Light%20Field%20Image%20Super-Resolution&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Mo,%20Yu&rft.date=2022-07-01&rft.volume=32&rft.issue=7&rft.spage=4431&rft.epage=4443&rft.pages=4431-4443&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2021.3121679&rft_dat=%3Cproquest_RIE%3E2682915279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682915279&rft_id=info:pmid/&rft_ieee_id=9583270&rfr_iscdi=true |