Dense Dual-Attention Network for Light Field Image Super-Resolution

Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2022-07, Vol.32 (7), p.4431-4443
Hauptverfasser: Mo, Yu, Wang, Yingqian, Xiao, Chao, Yang, Jungang, An, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4443
container_issue 7
container_start_page 4431
container_title IEEE transactions on circuits and systems for video technology
container_volume 32
creator Mo, Yu
Wang, Yingqian
Xiao, Chao
Yang, Jungang
An, Wei
description Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previous layers can be weakened as the depth of network increases. In this paper, we propose a dense dual-attention network for LF image SR. Specifically, we design a view attention module to adaptively capture discriminative features across different views and a channel attention module to selectively focus on informative information across all channels. These two modules are fed to two branches and stacked separately in a chain structure for adaptive fusion of hierarchical features and distillation of valid information. Meanwhile, a dense connection is used to fully exploit multi-level information. Extensive experiments demonstrate that our dense dual-attention mechanism can capture informative information across views and channels to improve SR performance. Comparative results show the advantage of our method over state-of-the-art methods on public datasets.
doi_str_mv 10.1109/TCSVT.2021.3121679
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9583270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9583270</ieee_id><sourcerecordid>2682915279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-cee1b8dfa0633c4f1bd4572829ca0292d4003c5d83994854fc1cf89b4118c7483</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwA3CJxDnFu7Yb-1ilFJAqkGjhaqXOpqSkSbETIf6elFacdg7zZqXH2DXwEQA3d8t08b4cIUcYCUAYJ-aEDUApHSNyddpnriDWCOqcXYSw4RyklsmApVOqA0XTLqviSdtS3ZZNHT1T-934z6hofDQv1x9tNCupyqOnbbamaNHtyMevFJqq29cv2VmRVYGujnfI3mb3y_Qxnr88PKWTeezQqDZ2RLDSeZHxsRBOFrDKpUpQo3EZR4O55Fw4lWthjNRKFg5coc1KAmiXSC2G7Pawu_PNV0ehtZum83X_0uK4nwGFielbeGg534TgqbA7X24z_2OB270s-yfL7mXZo6weujlAJRH9A0ZpgQkXvyKfZIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682915279</pqid></control><display><type>article</type><title>Dense Dual-Attention Network for Light Field Image Super-Resolution</title><source>IEEE Electronic Library (IEL)</source><creator>Mo, Yu ; Wang, Yingqian ; Xiao, Chao ; Yang, Jungang ; An, Wei</creator><creatorcontrib>Mo, Yu ; Wang, Yingqian ; Xiao, Chao ; Yang, Jungang ; An, Wei</creatorcontrib><description>Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previous layers can be weakened as the depth of network increases. In this paper, we propose a dense dual-attention network for LF image SR. Specifically, we design a view attention module to adaptively capture discriminative features across different views and a channel attention module to selectively focus on informative information across all channels. These two modules are fed to two branches and stacked separately in a chain structure for adaptive fusion of hierarchical features and distillation of valid information. Meanwhile, a dense connection is used to fully exploit multi-level information. Extensive experiments demonstrate that our dense dual-attention mechanism can capture informative information across views and channels to improve SR performance. Comparative results show the advantage of our method over state-of-the-art methods on public datasets.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2021.3121679</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; attention mechanism ; Chain branching ; Channels ; Convolutional neural networks ; Correlation ; Data mining ; dense connection ; Distillation ; Feature extraction ; Image resolution ; Light field ; Modules ; Performance enhancement ; Spatial data ; Spatial resolution ; super-resolution ; Superresolution</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-07, Vol.32 (7), p.4431-4443</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-cee1b8dfa0633c4f1bd4572829ca0292d4003c5d83994854fc1cf89b4118c7483</citedby><cites>FETCH-LOGICAL-c295t-cee1b8dfa0633c4f1bd4572829ca0292d4003c5d83994854fc1cf89b4118c7483</cites><orcidid>0000-0002-5805-3442 ; 0000-0002-9666-8894 ; 0000-0002-9081-6227 ; 0000-0002-3127-8705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9583270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9583270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mo, Yu</creatorcontrib><creatorcontrib>Wang, Yingqian</creatorcontrib><creatorcontrib>Xiao, Chao</creatorcontrib><creatorcontrib>Yang, Jungang</creatorcontrib><creatorcontrib>An, Wei</creatorcontrib><title>Dense Dual-Attention Network for Light Field Image Super-Resolution</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previous layers can be weakened as the depth of network increases. In this paper, we propose a dense dual-attention network for LF image SR. Specifically, we design a view attention module to adaptively capture discriminative features across different views and a channel attention module to selectively focus on informative information across all channels. These two modules are fed to two branches and stacked separately in a chain structure for adaptive fusion of hierarchical features and distillation of valid information. Meanwhile, a dense connection is used to fully exploit multi-level information. Extensive experiments demonstrate that our dense dual-attention mechanism can capture informative information across views and channels to improve SR performance. Comparative results show the advantage of our method over state-of-the-art methods on public datasets.</description><subject>Adaptation models</subject><subject>attention mechanism</subject><subject>Chain branching</subject><subject>Channels</subject><subject>Convolutional neural networks</subject><subject>Correlation</subject><subject>Data mining</subject><subject>dense connection</subject><subject>Distillation</subject><subject>Feature extraction</subject><subject>Image resolution</subject><subject>Light field</subject><subject>Modules</subject><subject>Performance enhancement</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><subject>super-resolution</subject><subject>Superresolution</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRC0EEqXwA3CJxDnFu7Yb-1ilFJAqkGjhaqXOpqSkSbETIf6elFacdg7zZqXH2DXwEQA3d8t08b4cIUcYCUAYJ-aEDUApHSNyddpnriDWCOqcXYSw4RyklsmApVOqA0XTLqviSdtS3ZZNHT1T-934z6hofDQv1x9tNCupyqOnbbamaNHtyMevFJqq29cv2VmRVYGujnfI3mb3y_Qxnr88PKWTeezQqDZ2RLDSeZHxsRBOFrDKpUpQo3EZR4O55Fw4lWthjNRKFg5coc1KAmiXSC2G7Pawu_PNV0ehtZum83X_0uK4nwGFielbeGg534TgqbA7X24z_2OB270s-yfL7mXZo6weujlAJRH9A0ZpgQkXvyKfZIg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Mo, Yu</creator><creator>Wang, Yingqian</creator><creator>Xiao, Chao</creator><creator>Yang, Jungang</creator><creator>An, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5805-3442</orcidid><orcidid>https://orcid.org/0000-0002-9666-8894</orcidid><orcidid>https://orcid.org/0000-0002-9081-6227</orcidid><orcidid>https://orcid.org/0000-0002-3127-8705</orcidid></search><sort><creationdate>20220701</creationdate><title>Dense Dual-Attention Network for Light Field Image Super-Resolution</title><author>Mo, Yu ; Wang, Yingqian ; Xiao, Chao ; Yang, Jungang ; An, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-cee1b8dfa0633c4f1bd4572829ca0292d4003c5d83994854fc1cf89b4118c7483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>attention mechanism</topic><topic>Chain branching</topic><topic>Channels</topic><topic>Convolutional neural networks</topic><topic>Correlation</topic><topic>Data mining</topic><topic>dense connection</topic><topic>Distillation</topic><topic>Feature extraction</topic><topic>Image resolution</topic><topic>Light field</topic><topic>Modules</topic><topic>Performance enhancement</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><topic>super-resolution</topic><topic>Superresolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mo, Yu</creatorcontrib><creatorcontrib>Wang, Yingqian</creatorcontrib><creatorcontrib>Xiao, Chao</creatorcontrib><creatorcontrib>Yang, Jungang</creatorcontrib><creatorcontrib>An, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mo, Yu</au><au>Wang, Yingqian</au><au>Xiao, Chao</au><au>Yang, Jungang</au><au>An, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dense Dual-Attention Network for Light Field Image Super-Resolution</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>32</volume><issue>7</issue><spage>4431</spage><epage>4443</epage><pages>4431-4443</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previous layers can be weakened as the depth of network increases. In this paper, we propose a dense dual-attention network for LF image SR. Specifically, we design a view attention module to adaptively capture discriminative features across different views and a channel attention module to selectively focus on informative information across all channels. These two modules are fed to two branches and stacked separately in a chain structure for adaptive fusion of hierarchical features and distillation of valid information. Meanwhile, a dense connection is used to fully exploit multi-level information. Extensive experiments demonstrate that our dense dual-attention mechanism can capture informative information across views and channels to improve SR performance. Comparative results show the advantage of our method over state-of-the-art methods on public datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2021.3121679</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5805-3442</orcidid><orcidid>https://orcid.org/0000-0002-9666-8894</orcidid><orcidid>https://orcid.org/0000-0002-9081-6227</orcidid><orcidid>https://orcid.org/0000-0002-3127-8705</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2022-07, Vol.32 (7), p.4431-4443
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_9583270
source IEEE Electronic Library (IEL)
subjects Adaptation models
attention mechanism
Chain branching
Channels
Convolutional neural networks
Correlation
Data mining
dense connection
Distillation
Feature extraction
Image resolution
Light field
Modules
Performance enhancement
Spatial data
Spatial resolution
super-resolution
Superresolution
title Dense Dual-Attention Network for Light Field Image Super-Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dense%20Dual-Attention%20Network%20for%20Light%20Field%20Image%20Super-Resolution&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Mo,%20Yu&rft.date=2022-07-01&rft.volume=32&rft.issue=7&rft.spage=4431&rft.epage=4443&rft.pages=4431-4443&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2021.3121679&rft_dat=%3Cproquest_RIE%3E2682915279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682915279&rft_id=info:pmid/&rft_ieee_id=9583270&rfr_iscdi=true