Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images
This paper presents a multiple resolution algorithm for the segmentation of three-dimensional magnetic resonance (MR) images. The algorithm consists in the unsupervised segmentation of the MR volume into regions of different statistical behavior. Firstly, an unsupervised merging algorithm estimates...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1050 vol.3 |
---|---|
container_issue | |
container_start_page | 1047 |
container_title | |
container_volume | 3 |
creator | Capelle, A.S. Alata, O. Fernandez-Maloigne, C. Ferrie, J.C. |
description | This paper presents a multiple resolution algorithm for the segmentation of three-dimensional magnetic resonance (MR) images. The algorithm consists in the unsupervised segmentation of the MR volume into regions of different statistical behavior. Firstly, an unsupervised merging algorithm estimates a block segmentation of the volume while determining the region number and the parameters of those regions. This estimation is computed by minimizing a global information criterion. Next, the small regions are eliminated using statistic criteria. Finally, the segmentation is performed using the neighboring relationships between voxels via hidden Markov random fields and a multiple resolution iterated conditional mode algorithm. Some results on volumetric brain MR images are presented and discussed. |
doi_str_mv | 10.1109/ICIP.2001.958306 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_958306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>958306</ieee_id><sourcerecordid>oai_HAL_hal_02297553v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h138t-f2fe85427fbd195d73bd9f19c188d8031d4e08458ab3d88abfc943ce45366ea13</originalsourceid><addsrcrecordid>eNo9kE1LxDAQQAMiqOvexVOuHlqTJmmT41LUXSjowT3XtJlsI_1YkrrgvzdLZecwA28eM8Mg9EBJSilRz7ty95FmhNBUCclIfoXuSCEJy4tM0Bu0DuGbxOCCR3SLvvZj-DmCP7kABuv-MHk3dwO2k8dzBzjAYYBx1rObRjzZyDxAYlyEISLd40EfRphdiz2ECMYWcOO1G7GLHQj36NrqPsD6v67Q_vXls9wm1fvbrtxUSUeZnBObWZCCZ4VtDFXCFKwxylLVUilNPJ8aDkRyIXXDjIzZtoqzFrhgeQ6ashV6WuZ2uq-PPi73v_WkXb3dVPWZkSxThRDsdHYfF9cBwEVe_sX-AF2JYgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Capelle, A.S. ; Alata, O. ; Fernandez-Maloigne, C. ; Ferrie, J.C.</creator><creatorcontrib>Capelle, A.S. ; Alata, O. ; Fernandez-Maloigne, C. ; Ferrie, J.C.</creatorcontrib><description>This paper presents a multiple resolution algorithm for the segmentation of three-dimensional magnetic resonance (MR) images. The algorithm consists in the unsupervised segmentation of the MR volume into regions of different statistical behavior. Firstly, an unsupervised merging algorithm estimates a block segmentation of the volume while determining the region number and the parameters of those regions. This estimation is computed by minimizing a global information criterion. Next, the small regions are eliminated using statistic criteria. Finally, the segmentation is performed using the neighboring relationships between voxels via hidden Markov random fields and a multiple resolution iterated conditional mode algorithm. Some results on volumetric brain MR images are presented and discussed.</description><identifier>ISBN: 0780367251</identifier><identifier>ISBN: 9780780367258</identifier><identifier>DOI: 10.1109/ICIP.2001.958306</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Engineering Sciences ; Gaussian processes ; Hidden Markov models ; Image resolution ; Image segmentation ; Magnetic resonance ; Magnetic resonance imaging ; Merging ; Signal and Image processing ; Statistics ; Stochastic processes</subject><ispartof>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001, Vol.3, p.1047-1050 vol.3</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7185-0702 ; 0000-0003-4818-9327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/958306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/958306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02297553$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Capelle, A.S.</creatorcontrib><creatorcontrib>Alata, O.</creatorcontrib><creatorcontrib>Fernandez-Maloigne, C.</creatorcontrib><creatorcontrib>Ferrie, J.C.</creatorcontrib><title>Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images</title><title>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)</title><addtitle>ICIP</addtitle><description>This paper presents a multiple resolution algorithm for the segmentation of three-dimensional magnetic resonance (MR) images. The algorithm consists in the unsupervised segmentation of the MR volume into regions of different statistical behavior. Firstly, an unsupervised merging algorithm estimates a block segmentation of the volume while determining the region number and the parameters of those regions. This estimation is computed by minimizing a global information criterion. Next, the small regions are eliminated using statistic criteria. Finally, the segmentation is performed using the neighboring relationships between voxels via hidden Markov random fields and a multiple resolution iterated conditional mode algorithm. Some results on volumetric brain MR images are presented and discussed.</description><subject>Brain modeling</subject><subject>Engineering Sciences</subject><subject>Gaussian processes</subject><subject>Hidden Markov models</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Merging</subject><subject>Signal and Image processing</subject><subject>Statistics</subject><subject>Stochastic processes</subject><isbn>0780367251</isbn><isbn>9780780367258</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQQAMiqOvexVOuHlqTJmmT41LUXSjowT3XtJlsI_1YkrrgvzdLZecwA28eM8Mg9EBJSilRz7ty95FmhNBUCclIfoXuSCEJy4tM0Bu0DuGbxOCCR3SLvvZj-DmCP7kABuv-MHk3dwO2k8dzBzjAYYBx1rObRjzZyDxAYlyEISLd40EfRphdiz2ECMYWcOO1G7GLHQj36NrqPsD6v67Q_vXls9wm1fvbrtxUSUeZnBObWZCCZ4VtDFXCFKwxylLVUilNPJ8aDkRyIXXDjIzZtoqzFrhgeQ6ashV6WuZ2uq-PPi73v_WkXb3dVPWZkSxThRDsdHYfF9cBwEVe_sX-AF2JYgQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Capelle, A.S.</creator><creator>Alata, O.</creator><creator>Fernandez-Maloigne, C.</creator><creator>Ferrie, J.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7185-0702</orcidid><orcidid>https://orcid.org/0000-0003-4818-9327</orcidid></search><sort><creationdate>2001</creationdate><title>Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images</title><author>Capelle, A.S. ; Alata, O. ; Fernandez-Maloigne, C. ; Ferrie, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h138t-f2fe85427fbd195d73bd9f19c188d8031d4e08458ab3d88abfc943ce45366ea13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Brain modeling</topic><topic>Engineering Sciences</topic><topic>Gaussian processes</topic><topic>Hidden Markov models</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Merging</topic><topic>Signal and Image processing</topic><topic>Statistics</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Capelle, A.S.</creatorcontrib><creatorcontrib>Alata, O.</creatorcontrib><creatorcontrib>Fernandez-Maloigne, C.</creatorcontrib><creatorcontrib>Ferrie, J.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Capelle, A.S.</au><au>Alata, O.</au><au>Fernandez-Maloigne, C.</au><au>Ferrie, J.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images</atitle><btitle>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)</btitle><stitle>ICIP</stitle><date>2001</date><risdate>2001</risdate><volume>3</volume><spage>1047</spage><epage>1050 vol.3</epage><pages>1047-1050 vol.3</pages><isbn>0780367251</isbn><isbn>9780780367258</isbn><abstract>This paper presents a multiple resolution algorithm for the segmentation of three-dimensional magnetic resonance (MR) images. The algorithm consists in the unsupervised segmentation of the MR volume into regions of different statistical behavior. Firstly, an unsupervised merging algorithm estimates a block segmentation of the volume while determining the region number and the parameters of those regions. This estimation is computed by minimizing a global information criterion. Next, the small regions are eliminated using statistic criteria. Finally, the segmentation is performed using the neighboring relationships between voxels via hidden Markov random fields and a multiple resolution iterated conditional mode algorithm. Some results on volumetric brain MR images are presented and discussed.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2001.958306</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7185-0702</orcidid><orcidid>https://orcid.org/0000-0003-4818-9327</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780367251 |
ispartof | Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001, Vol.3, p.1047-1050 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_958306 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Brain modeling Engineering Sciences Gaussian processes Hidden Markov models Image resolution Image segmentation Magnetic resonance Magnetic resonance imaging Merging Signal and Image processing Statistics Stochastic processes |
title | Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20algorithm%20for%20the%20segmentation%20of%20three-dimensional%20magnetic%20resonance%20brain%20images&rft.btitle=Proceedings%202001%20International%20Conference%20on%20Image%20Processing%20(Cat.%20No.01CH37205)&rft.au=Capelle,%20A.S.&rft.date=2001&rft.volume=3&rft.spage=1047&rft.epage=1050%20vol.3&rft.pages=1047-1050%20vol.3&rft.isbn=0780367251&rft.isbn_list=9780780367258&rft_id=info:doi/10.1109/ICIP.2001.958306&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_02297553v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=958306&rfr_iscdi=true |