Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images

This paper presents a multiple resolution algorithm for the segmentation of three-dimensional magnetic resonance (MR) images. The algorithm consists in the unsupervised segmentation of the MR volume into regions of different statistical behavior. Firstly, an unsupervised merging algorithm estimates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Capelle, A.S., Alata, O., Fernandez-Maloigne, C., Ferrie, J.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1050 vol.3
container_issue
container_start_page 1047
container_title
container_volume 3
creator Capelle, A.S.
Alata, O.
Fernandez-Maloigne, C.
Ferrie, J.C.
description This paper presents a multiple resolution algorithm for the segmentation of three-dimensional magnetic resonance (MR) images. The algorithm consists in the unsupervised segmentation of the MR volume into regions of different statistical behavior. Firstly, an unsupervised merging algorithm estimates a block segmentation of the volume while determining the region number and the parameters of those regions. This estimation is computed by minimizing a global information criterion. Next, the small regions are eliminated using statistic criteria. Finally, the segmentation is performed using the neighboring relationships between voxels via hidden Markov random fields and a multiple resolution iterated conditional mode algorithm. Some results on volumetric brain MR images are presented and discussed.
doi_str_mv 10.1109/ICIP.2001.958306
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_958306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>958306</ieee_id><sourcerecordid>oai_HAL_hal_02297553v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h138t-f2fe85427fbd195d73bd9f19c188d8031d4e08458ab3d88abfc943ce45366ea13</originalsourceid><addsrcrecordid>eNo9kE1LxDAQQAMiqOvexVOuHlqTJmmT41LUXSjowT3XtJlsI_1YkrrgvzdLZecwA28eM8Mg9EBJSilRz7ty95FmhNBUCclIfoXuSCEJy4tM0Bu0DuGbxOCCR3SLvvZj-DmCP7kABuv-MHk3dwO2k8dzBzjAYYBx1rObRjzZyDxAYlyEISLd40EfRphdiz2ECMYWcOO1G7GLHQj36NrqPsD6v67Q_vXls9wm1fvbrtxUSUeZnBObWZCCZ4VtDFXCFKwxylLVUilNPJ8aDkRyIXXDjIzZtoqzFrhgeQ6ashV6WuZ2uq-PPi73v_WkXb3dVPWZkSxThRDsdHYfF9cBwEVe_sX-AF2JYgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Capelle, A.S. ; Alata, O. ; Fernandez-Maloigne, C. ; Ferrie, J.C.</creator><creatorcontrib>Capelle, A.S. ; Alata, O. ; Fernandez-Maloigne, C. ; Ferrie, J.C.</creatorcontrib><description>This paper presents a multiple resolution algorithm for the segmentation of three-dimensional magnetic resonance (MR) images. The algorithm consists in the unsupervised segmentation of the MR volume into regions of different statistical behavior. Firstly, an unsupervised merging algorithm estimates a block segmentation of the volume while determining the region number and the parameters of those regions. This estimation is computed by minimizing a global information criterion. Next, the small regions are eliminated using statistic criteria. Finally, the segmentation is performed using the neighboring relationships between voxels via hidden Markov random fields and a multiple resolution iterated conditional mode algorithm. Some results on volumetric brain MR images are presented and discussed.</description><identifier>ISBN: 0780367251</identifier><identifier>ISBN: 9780780367258</identifier><identifier>DOI: 10.1109/ICIP.2001.958306</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Engineering Sciences ; Gaussian processes ; Hidden Markov models ; Image resolution ; Image segmentation ; Magnetic resonance ; Magnetic resonance imaging ; Merging ; Signal and Image processing ; Statistics ; Stochastic processes</subject><ispartof>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001, Vol.3, p.1047-1050 vol.3</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7185-0702 ; 0000-0003-4818-9327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/958306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/958306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02297553$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Capelle, A.S.</creatorcontrib><creatorcontrib>Alata, O.</creatorcontrib><creatorcontrib>Fernandez-Maloigne, C.</creatorcontrib><creatorcontrib>Ferrie, J.C.</creatorcontrib><title>Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images</title><title>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)</title><addtitle>ICIP</addtitle><description>This paper presents a multiple resolution algorithm for the segmentation of three-dimensional magnetic resonance (MR) images. The algorithm consists in the unsupervised segmentation of the MR volume into regions of different statistical behavior. Firstly, an unsupervised merging algorithm estimates a block segmentation of the volume while determining the region number and the parameters of those regions. This estimation is computed by minimizing a global information criterion. Next, the small regions are eliminated using statistic criteria. Finally, the segmentation is performed using the neighboring relationships between voxels via hidden Markov random fields and a multiple resolution iterated conditional mode algorithm. Some results on volumetric brain MR images are presented and discussed.</description><subject>Brain modeling</subject><subject>Engineering Sciences</subject><subject>Gaussian processes</subject><subject>Hidden Markov models</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Merging</subject><subject>Signal and Image processing</subject><subject>Statistics</subject><subject>Stochastic processes</subject><isbn>0780367251</isbn><isbn>9780780367258</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQQAMiqOvexVOuHlqTJmmT41LUXSjowT3XtJlsI_1YkrrgvzdLZecwA28eM8Mg9EBJSilRz7ty95FmhNBUCclIfoXuSCEJy4tM0Bu0DuGbxOCCR3SLvvZj-DmCP7kABuv-MHk3dwO2k8dzBzjAYYBx1rObRjzZyDxAYlyEISLd40EfRphdiz2ECMYWcOO1G7GLHQj36NrqPsD6v67Q_vXls9wm1fvbrtxUSUeZnBObWZCCZ4VtDFXCFKwxylLVUilNPJ8aDkRyIXXDjIzZtoqzFrhgeQ6ashV6WuZ2uq-PPi73v_WkXb3dVPWZkSxThRDsdHYfF9cBwEVe_sX-AF2JYgQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Capelle, A.S.</creator><creator>Alata, O.</creator><creator>Fernandez-Maloigne, C.</creator><creator>Ferrie, J.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7185-0702</orcidid><orcidid>https://orcid.org/0000-0003-4818-9327</orcidid></search><sort><creationdate>2001</creationdate><title>Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images</title><author>Capelle, A.S. ; Alata, O. ; Fernandez-Maloigne, C. ; Ferrie, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h138t-f2fe85427fbd195d73bd9f19c188d8031d4e08458ab3d88abfc943ce45366ea13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Brain modeling</topic><topic>Engineering Sciences</topic><topic>Gaussian processes</topic><topic>Hidden Markov models</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Merging</topic><topic>Signal and Image processing</topic><topic>Statistics</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Capelle, A.S.</creatorcontrib><creatorcontrib>Alata, O.</creatorcontrib><creatorcontrib>Fernandez-Maloigne, C.</creatorcontrib><creatorcontrib>Ferrie, J.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Capelle, A.S.</au><au>Alata, O.</au><au>Fernandez-Maloigne, C.</au><au>Ferrie, J.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images</atitle><btitle>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)</btitle><stitle>ICIP</stitle><date>2001</date><risdate>2001</risdate><volume>3</volume><spage>1047</spage><epage>1050 vol.3</epage><pages>1047-1050 vol.3</pages><isbn>0780367251</isbn><isbn>9780780367258</isbn><abstract>This paper presents a multiple resolution algorithm for the segmentation of three-dimensional magnetic resonance (MR) images. The algorithm consists in the unsupervised segmentation of the MR volume into regions of different statistical behavior. Firstly, an unsupervised merging algorithm estimates a block segmentation of the volume while determining the region number and the parameters of those regions. This estimation is computed by minimizing a global information criterion. Next, the small regions are eliminated using statistic criteria. Finally, the segmentation is performed using the neighboring relationships between voxels via hidden Markov random fields and a multiple resolution iterated conditional mode algorithm. Some results on volumetric brain MR images are presented and discussed.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2001.958306</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7185-0702</orcidid><orcidid>https://orcid.org/0000-0003-4818-9327</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780367251
ispartof Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001, Vol.3, p.1047-1050 vol.3
issn
language eng
recordid cdi_ieee_primary_958306
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain modeling
Engineering Sciences
Gaussian processes
Hidden Markov models
Image resolution
Image segmentation
Magnetic resonance
Magnetic resonance imaging
Merging
Signal and Image processing
Statistics
Stochastic processes
title Unsupervised algorithm for the segmentation of three-dimensional magnetic resonance brain images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20algorithm%20for%20the%20segmentation%20of%20three-dimensional%20magnetic%20resonance%20brain%20images&rft.btitle=Proceedings%202001%20International%20Conference%20on%20Image%20Processing%20(Cat.%20No.01CH37205)&rft.au=Capelle,%20A.S.&rft.date=2001&rft.volume=3&rft.spage=1047&rft.epage=1050%20vol.3&rft.pages=1047-1050%20vol.3&rft.isbn=0780367251&rft.isbn_list=9780780367258&rft_id=info:doi/10.1109/ICIP.2001.958306&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_02297553v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=958306&rfr_iscdi=true