Multiobjective Multitasking Optimization With Subspace Distribution Alignment and Decision Variable Transfer

Evolutionary multitasking (EMT) with the ability to tackle multiple different tasks has attracted more and more attention. The transferred knowledge among tasks can simultaneously improve the solving efficiency of all optimization problems in the evolutionary process. However, if the way of knowledg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on emerging topics in computational intelligence 2022-08, Vol.6 (4), p.818-827
Hauptverfasser: Gao, Weifeng, Cheng, Jiangli, Gong, Maoguo, Li, Hong, Xie, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue 4
container_start_page 818
container_title IEEE transactions on emerging topics in computational intelligence
container_volume 6
creator Gao, Weifeng
Cheng, Jiangli
Gong, Maoguo
Li, Hong
Xie, Jin
description Evolutionary multitasking (EMT) with the ability to tackle multiple different tasks has attracted more and more attention. The transferred knowledge among tasks can simultaneously improve the solving efficiency of all optimization problems in the evolutionary process. However, if the way of knowledge transfer is inappropriate, the negative knowledge transfer will make a bad effect on the performance of EMT algorithms. It is worth studying that how to promote the positive knowledge transfer across tasks. In this paper, a multiobjective multitasking algorithm named EMT-DAVT is introduced. The proposed algorithm contains two components, namely subspace distribution alignment (DA) strategy and decision variable transfer (VT) mechanism. In DA strategy, a learned mapping matrix is utilized to align the distributions in the subspaces and reduces the divergence between subpopulations belonging to different tasks. Then, VT mechanism is implemented which can further promote the positive information transfer. The two proposed strategies interact with each other to improve the knowledge transfer. Finally, the search engine is designed to balance exploration and exploitation. The experimental results on the multiobjective multitasking test suites demonstrate that EMT-DAVT outperforms other classical multiobjective multitasking evolutionary algorithms.
doi_str_mv 10.1109/TETCI.2021.3115518
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9582815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9582815</ieee_id><sourcerecordid>2692815667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6873c0dd124dbf50de0f173ad0b96813d49987d40c14de3ac71d9181bfd6257c3</originalsourceid><addsrcrecordid>eNpNUMlOwzAUjBBIVKU_ABdLnFP8nDixj1XLUqmoB8pysxzbKS5pUmwHCb6epK0Qp7fNzBtNFF0CHgNgfrO6XU3nY4IJjBMASoGdRAOS5hATRt9O__Xn0cj7DcaYcAoJTQdR9dhWwTbFxqhgvwzaj0H6D1uv0XIX7Nb-yA5Qo1cb3tFTW_idVAbNrA_OFu3-NKnsut6aOiBZazQzyvp-_SKdlUVl0MrJ2pfGXURnpay8GR3rMHq-67w_xIvl_Xw6WcSq8xXijOWJwloDSXVRUqwNLiFPpMYFzxgkOuWc5TrFClJtEqly0BwYFKXOCM1VMoyuD7o713y2xgexaVpXdy8FyThhQLMs71DkgFKu8d6ZUuyc3Ur3LQCLPlixD1b0wYpjsB3p6kCyxpg_AqesV01-Af_qdmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692815667</pqid></control><display><type>article</type><title>Multiobjective Multitasking Optimization With Subspace Distribution Alignment and Decision Variable Transfer</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Weifeng ; Cheng, Jiangli ; Gong, Maoguo ; Li, Hong ; Xie, Jin</creator><creatorcontrib>Gao, Weifeng ; Cheng, Jiangli ; Gong, Maoguo ; Li, Hong ; Xie, Jin</creatorcontrib><description>Evolutionary multitasking (EMT) with the ability to tackle multiple different tasks has attracted more and more attention. The transferred knowledge among tasks can simultaneously improve the solving efficiency of all optimization problems in the evolutionary process. However, if the way of knowledge transfer is inappropriate, the negative knowledge transfer will make a bad effect on the performance of EMT algorithms. It is worth studying that how to promote the positive knowledge transfer across tasks. In this paper, a multiobjective multitasking algorithm named EMT-DAVT is introduced. The proposed algorithm contains two components, namely subspace distribution alignment (DA) strategy and decision variable transfer (VT) mechanism. In DA strategy, a learned mapping matrix is utilized to align the distributions in the subspaces and reduces the divergence between subpopulations belonging to different tasks. Then, VT mechanism is implemented which can further promote the positive information transfer. The two proposed strategies interact with each other to improve the knowledge transfer. Finally, the search engine is designed to balance exploration and exploitation. The experimental results on the multiobjective multitasking test suites demonstrate that EMT-DAVT outperforms other classical multiobjective multitasking evolutionary algorithms.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2021.3115518</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alignment ; Differential evolution ; Evolutionary algorithms ; evolutionary multitasking ; Information transfer ; Knowledge management ; Knowledge transfer ; multiobjective multitasking optimization ; Multiple objective analysis ; Multitasking ; Noise measurement ; Optimization ; Principal component analysis ; Search engines ; Sociology ; subspace distribution alignment ; Subspaces ; Task analysis</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2022-08, Vol.6 (4), p.818-827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-6873c0dd124dbf50de0f173ad0b96813d49987d40c14de3ac71d9181bfd6257c3</citedby><cites>FETCH-LOGICAL-c295t-6873c0dd124dbf50de0f173ad0b96813d49987d40c14de3ac71d9181bfd6257c3</cites><orcidid>0000-0002-0415-8556 ; 0000-0001-8709-5839 ; 0000-0001-9112-2887 ; 0000-0003-3853-0771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9582815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9582815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Weifeng</creatorcontrib><creatorcontrib>Cheng, Jiangli</creatorcontrib><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><title>Multiobjective Multitasking Optimization With Subspace Distribution Alignment and Decision Variable Transfer</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>Evolutionary multitasking (EMT) with the ability to tackle multiple different tasks has attracted more and more attention. The transferred knowledge among tasks can simultaneously improve the solving efficiency of all optimization problems in the evolutionary process. However, if the way of knowledge transfer is inappropriate, the negative knowledge transfer will make a bad effect on the performance of EMT algorithms. It is worth studying that how to promote the positive knowledge transfer across tasks. In this paper, a multiobjective multitasking algorithm named EMT-DAVT is introduced. The proposed algorithm contains two components, namely subspace distribution alignment (DA) strategy and decision variable transfer (VT) mechanism. In DA strategy, a learned mapping matrix is utilized to align the distributions in the subspaces and reduces the divergence between subpopulations belonging to different tasks. Then, VT mechanism is implemented which can further promote the positive information transfer. The two proposed strategies interact with each other to improve the knowledge transfer. Finally, the search engine is designed to balance exploration and exploitation. The experimental results on the multiobjective multitasking test suites demonstrate that EMT-DAVT outperforms other classical multiobjective multitasking evolutionary algorithms.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Differential evolution</subject><subject>Evolutionary algorithms</subject><subject>evolutionary multitasking</subject><subject>Information transfer</subject><subject>Knowledge management</subject><subject>Knowledge transfer</subject><subject>multiobjective multitasking optimization</subject><subject>Multiple objective analysis</subject><subject>Multitasking</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Principal component analysis</subject><subject>Search engines</subject><subject>Sociology</subject><subject>subspace distribution alignment</subject><subject>Subspaces</subject><subject>Task analysis</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMlOwzAUjBBIVKU_ABdLnFP8nDixj1XLUqmoB8pysxzbKS5pUmwHCb6epK0Qp7fNzBtNFF0CHgNgfrO6XU3nY4IJjBMASoGdRAOS5hATRt9O__Xn0cj7DcaYcAoJTQdR9dhWwTbFxqhgvwzaj0H6D1uv0XIX7Nb-yA5Qo1cb3tFTW_idVAbNrA_OFu3-NKnsut6aOiBZazQzyvp-_SKdlUVl0MrJ2pfGXURnpay8GR3rMHq-67w_xIvl_Xw6WcSq8xXijOWJwloDSXVRUqwNLiFPpMYFzxgkOuWc5TrFClJtEqly0BwYFKXOCM1VMoyuD7o713y2xgexaVpXdy8FyThhQLMs71DkgFKu8d6ZUuyc3Ur3LQCLPlixD1b0wYpjsB3p6kCyxpg_AqesV01-Af_qdmk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Gao, Weifeng</creator><creator>Cheng, Jiangli</creator><creator>Gong, Maoguo</creator><creator>Li, Hong</creator><creator>Xie, Jin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0415-8556</orcidid><orcidid>https://orcid.org/0000-0001-8709-5839</orcidid><orcidid>https://orcid.org/0000-0001-9112-2887</orcidid><orcidid>https://orcid.org/0000-0003-3853-0771</orcidid></search><sort><creationdate>20220801</creationdate><title>Multiobjective Multitasking Optimization With Subspace Distribution Alignment and Decision Variable Transfer</title><author>Gao, Weifeng ; Cheng, Jiangli ; Gong, Maoguo ; Li, Hong ; Xie, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6873c0dd124dbf50de0f173ad0b96813d49987d40c14de3ac71d9181bfd6257c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Differential evolution</topic><topic>Evolutionary algorithms</topic><topic>evolutionary multitasking</topic><topic>Information transfer</topic><topic>Knowledge management</topic><topic>Knowledge transfer</topic><topic>multiobjective multitasking optimization</topic><topic>Multiple objective analysis</topic><topic>Multitasking</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Principal component analysis</topic><topic>Search engines</topic><topic>Sociology</topic><topic>subspace distribution alignment</topic><topic>Subspaces</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Weifeng</creatorcontrib><creatorcontrib>Cheng, Jiangli</creatorcontrib><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Weifeng</au><au>Cheng, Jiangli</au><au>Gong, Maoguo</au><au>Li, Hong</au><au>Xie, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Multitasking Optimization With Subspace Distribution Alignment and Decision Variable Transfer</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>6</volume><issue>4</issue><spage>818</spage><epage>827</epage><pages>818-827</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>Evolutionary multitasking (EMT) with the ability to tackle multiple different tasks has attracted more and more attention. The transferred knowledge among tasks can simultaneously improve the solving efficiency of all optimization problems in the evolutionary process. However, if the way of knowledge transfer is inappropriate, the negative knowledge transfer will make a bad effect on the performance of EMT algorithms. It is worth studying that how to promote the positive knowledge transfer across tasks. In this paper, a multiobjective multitasking algorithm named EMT-DAVT is introduced. The proposed algorithm contains two components, namely subspace distribution alignment (DA) strategy and decision variable transfer (VT) mechanism. In DA strategy, a learned mapping matrix is utilized to align the distributions in the subspaces and reduces the divergence between subpopulations belonging to different tasks. Then, VT mechanism is implemented which can further promote the positive information transfer. The two proposed strategies interact with each other to improve the knowledge transfer. Finally, the search engine is designed to balance exploration and exploitation. The experimental results on the multiobjective multitasking test suites demonstrate that EMT-DAVT outperforms other classical multiobjective multitasking evolutionary algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TETCI.2021.3115518</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0415-8556</orcidid><orcidid>https://orcid.org/0000-0001-8709-5839</orcidid><orcidid>https://orcid.org/0000-0001-9112-2887</orcidid><orcidid>https://orcid.org/0000-0003-3853-0771</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2471-285X
ispartof IEEE transactions on emerging topics in computational intelligence, 2022-08, Vol.6 (4), p.818-827
issn 2471-285X
2471-285X
language eng
recordid cdi_ieee_primary_9582815
source IEEE Electronic Library (IEL)
subjects Algorithms
Alignment
Differential evolution
Evolutionary algorithms
evolutionary multitasking
Information transfer
Knowledge management
Knowledge transfer
multiobjective multitasking optimization
Multiple objective analysis
Multitasking
Noise measurement
Optimization
Principal component analysis
Search engines
Sociology
subspace distribution alignment
Subspaces
Task analysis
title Multiobjective Multitasking Optimization With Subspace Distribution Alignment and Decision Variable Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Multitasking%20Optimization%20With%20Subspace%20Distribution%20Alignment%20and%20Decision%20Variable%20Transfer&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Gao,%20Weifeng&rft.date=2022-08-01&rft.volume=6&rft.issue=4&rft.spage=818&rft.epage=827&rft.pages=818-827&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2021.3115518&rft_dat=%3Cproquest_RIE%3E2692815667%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692815667&rft_id=info:pmid/&rft_ieee_id=9582815&rfr_iscdi=true