An Energy-Efficiency Multi-Relay Selection and Power Allocation Based on Deep Neural Network for Amplify-and-Forward Cooperative Transmission

In this letter, an energy-efficiency (EE) resource allocation strategy is investigated for the amplify-and-forward (AF) protocol used to forward data to the destination. First, we formulate an EE optimization problem of multi-relay AF system, which correlates the power of source with the power of ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2022-01, Vol.11 (1), p.63-66
Hauptverfasser: Guo, Yan-Yan, Yang, Jing, Tan, Xiao-Long, Liu, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 63
container_title IEEE wireless communications letters
container_volume 11
creator Guo, Yan-Yan
Yang, Jing
Tan, Xiao-Long
Liu, Qian
description In this letter, an energy-efficiency (EE) resource allocation strategy is investigated for the amplify-and-forward (AF) protocol used to forward data to the destination. First, we formulate an EE optimization problem of multi-relay AF system, which correlates the power of source with the power of each relay. Then, a deep neural network (DNN)-based model is constructed to implement the joint power allocation of source and multiple relays. In particular, we adopt the modified rectified linear unit (ReLU) as the activation function in the output layer of the DNN model to hinder relays' negative output power weightings, thereby to simultaneously realize the selection of relays and their power allocation. The simulation results show that our scheme enables better performance in term of the EE of system compared with the conventional strategies and convolutional neural network (CNN).
doi_str_mv 10.1109/LWC.2021.3120287
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9570822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9570822</ieee_id><sourcerecordid>2617495103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d34a5747aebe76c54100e0cbcb0a66da0eefe0ab3cb1e985ff710466e77cd9af3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYsoOObeBV8CPncmaZu0j7NuKsw_6MTHkqY30pk1NWkd_RB-ZzMnuy_ncvmdc-EEwTnBU0JwdrV8z6cUUzKNiJeUHwUjShgNaRQnx4c94qfBxLk19sMwoSQdBT-zBs0bsB9DOFeqljU0ckAPve7q8AW0GNAraJBdbRokmgo9my1YNNPaSPF3vBYOKuSXG4AWPUJvhfbSbY39RMp4dtPqWg2hd4cLY7fCVig3pgXrA74Braxo3KZ2zqedBSdKaAeTfx0Hb4v5Kr8Ll0-39_lsGUqakS6solgkPOYCSuBMJjHBGLAsZYkFY5XAAAqwKCNZEsjSRClOcMwYcC6rTKhoHFzuc1trvnpwXbE2vW38y4IywuMsITjyFN5T0hrnLKiitfVG2KEguNj1Xvjei13vxX_v3nKxt9QAcMCzhOOU0ugXhduArw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617495103</pqid></control><display><type>article</type><title>An Energy-Efficiency Multi-Relay Selection and Power Allocation Based on Deep Neural Network for Amplify-and-Forward Cooperative Transmission</title><source>IEEE Electronic Library Online</source><creator>Guo, Yan-Yan ; Yang, Jing ; Tan, Xiao-Long ; Liu, Qian</creator><creatorcontrib>Guo, Yan-Yan ; Yang, Jing ; Tan, Xiao-Long ; Liu, Qian</creatorcontrib><description>In this letter, an energy-efficiency (EE) resource allocation strategy is investigated for the amplify-and-forward (AF) protocol used to forward data to the destination. First, we formulate an EE optimization problem of multi-relay AF system, which correlates the power of source with the power of each relay. Then, a deep neural network (DNN)-based model is constructed to implement the joint power allocation of source and multiple relays. In particular, we adopt the modified rectified linear unit (ReLU) as the activation function in the output layer of the DNN model to hinder relays' negative output power weightings, thereby to simultaneously realize the selection of relays and their power allocation. The simulation results show that our scheme enables better performance in term of the EE of system compared with the conventional strategies and convolutional neural network (CNN).</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2021.3120287</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>AF cooperation ; Amplification ; Artificial neural networks ; Deep learning ; energy-efficiency transmission ; Neural networks ; Optimization ; power allocation ; Protocols ; Reactive power ; Relay ; relay selection ; Relays ; Resource allocation ; Resource management ; Training</subject><ispartof>IEEE wireless communications letters, 2022-01, Vol.11 (1), p.63-66</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d34a5747aebe76c54100e0cbcb0a66da0eefe0ab3cb1e985ff710466e77cd9af3</citedby><cites>FETCH-LOGICAL-c291t-d34a5747aebe76c54100e0cbcb0a66da0eefe0ab3cb1e985ff710466e77cd9af3</cites><orcidid>0000-0002-1610-6614 ; 0000-0001-7442-7101 ; 0000-0003-2868-0063 ; 0000-0002-8107-6132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9570822$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9570822$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Yan-Yan</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Tan, Xiao-Long</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><title>An Energy-Efficiency Multi-Relay Selection and Power Allocation Based on Deep Neural Network for Amplify-and-Forward Cooperative Transmission</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>In this letter, an energy-efficiency (EE) resource allocation strategy is investigated for the amplify-and-forward (AF) protocol used to forward data to the destination. First, we formulate an EE optimization problem of multi-relay AF system, which correlates the power of source with the power of each relay. Then, a deep neural network (DNN)-based model is constructed to implement the joint power allocation of source and multiple relays. In particular, we adopt the modified rectified linear unit (ReLU) as the activation function in the output layer of the DNN model to hinder relays' negative output power weightings, thereby to simultaneously realize the selection of relays and their power allocation. The simulation results show that our scheme enables better performance in term of the EE of system compared with the conventional strategies and convolutional neural network (CNN).</description><subject>AF cooperation</subject><subject>Amplification</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>energy-efficiency transmission</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>power allocation</subject><subject>Protocols</subject><subject>Reactive power</subject><subject>Relay</subject><subject>relay selection</subject><subject>Relays</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Training</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYsoOObeBV8CPncmaZu0j7NuKsw_6MTHkqY30pk1NWkd_RB-ZzMnuy_ncvmdc-EEwTnBU0JwdrV8z6cUUzKNiJeUHwUjShgNaRQnx4c94qfBxLk19sMwoSQdBT-zBs0bsB9DOFeqljU0ckAPve7q8AW0GNAraJBdbRokmgo9my1YNNPaSPF3vBYOKuSXG4AWPUJvhfbSbY39RMp4dtPqWg2hd4cLY7fCVig3pgXrA74Braxo3KZ2zqedBSdKaAeTfx0Hb4v5Kr8Ll0-39_lsGUqakS6solgkPOYCSuBMJjHBGLAsZYkFY5XAAAqwKCNZEsjSRClOcMwYcC6rTKhoHFzuc1trvnpwXbE2vW38y4IywuMsITjyFN5T0hrnLKiitfVG2KEguNj1Xvjei13vxX_v3nKxt9QAcMCzhOOU0ugXhduArw</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Guo, Yan-Yan</creator><creator>Yang, Jing</creator><creator>Tan, Xiao-Long</creator><creator>Liu, Qian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1610-6614</orcidid><orcidid>https://orcid.org/0000-0001-7442-7101</orcidid><orcidid>https://orcid.org/0000-0003-2868-0063</orcidid><orcidid>https://orcid.org/0000-0002-8107-6132</orcidid></search><sort><creationdate>202201</creationdate><title>An Energy-Efficiency Multi-Relay Selection and Power Allocation Based on Deep Neural Network for Amplify-and-Forward Cooperative Transmission</title><author>Guo, Yan-Yan ; Yang, Jing ; Tan, Xiao-Long ; Liu, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d34a5747aebe76c54100e0cbcb0a66da0eefe0ab3cb1e985ff710466e77cd9af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AF cooperation</topic><topic>Amplification</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>energy-efficiency transmission</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>power allocation</topic><topic>Protocols</topic><topic>Reactive power</topic><topic>Relay</topic><topic>relay selection</topic><topic>Relays</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yan-Yan</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Tan, Xiao-Long</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Yan-Yan</au><au>Yang, Jing</au><au>Tan, Xiao-Long</au><au>Liu, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy-Efficiency Multi-Relay Selection and Power Allocation Based on Deep Neural Network for Amplify-and-Forward Cooperative Transmission</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2022-01</date><risdate>2022</risdate><volume>11</volume><issue>1</issue><spage>63</spage><epage>66</epage><pages>63-66</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>In this letter, an energy-efficiency (EE) resource allocation strategy is investigated for the amplify-and-forward (AF) protocol used to forward data to the destination. First, we formulate an EE optimization problem of multi-relay AF system, which correlates the power of source with the power of each relay. Then, a deep neural network (DNN)-based model is constructed to implement the joint power allocation of source and multiple relays. In particular, we adopt the modified rectified linear unit (ReLU) as the activation function in the output layer of the DNN model to hinder relays' negative output power weightings, thereby to simultaneously realize the selection of relays and their power allocation. The simulation results show that our scheme enables better performance in term of the EE of system compared with the conventional strategies and convolutional neural network (CNN).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2021.3120287</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1610-6614</orcidid><orcidid>https://orcid.org/0000-0001-7442-7101</orcidid><orcidid>https://orcid.org/0000-0003-2868-0063</orcidid><orcidid>https://orcid.org/0000-0002-8107-6132</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2022-01, Vol.11 (1), p.63-66
issn 2162-2337
2162-2345
language eng
recordid cdi_ieee_primary_9570822
source IEEE Electronic Library Online
subjects AF cooperation
Amplification
Artificial neural networks
Deep learning
energy-efficiency transmission
Neural networks
Optimization
power allocation
Protocols
Reactive power
Relay
relay selection
Relays
Resource allocation
Resource management
Training
title An Energy-Efficiency Multi-Relay Selection and Power Allocation Based on Deep Neural Network for Amplify-and-Forward Cooperative Transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy-Efficiency%20Multi-Relay%20Selection%20and%20Power%20Allocation%20Based%20on%20Deep%20Neural%20Network%20for%20Amplify-and-Forward%20Cooperative%20Transmission&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Guo,%20Yan-Yan&rft.date=2022-01&rft.volume=11&rft.issue=1&rft.spage=63&rft.epage=66&rft.pages=63-66&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2021.3120287&rft_dat=%3Cproquest_RIE%3E2617495103%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617495103&rft_id=info:pmid/&rft_ieee_id=9570822&rfr_iscdi=true