The Emerging Trends of Multi-Label Learning

Exabytes of data are generated daily by humans, leading to the growing needs for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2022-11, Vol.44 (11), p.7955-7974
Hauptverfasser: Liu, Weiwei, Wang, Haobo, Shen, Xiaobo, Tsang, Ivor W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7974
container_issue 11
container_start_page 7955
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 44
creator Liu, Weiwei
Wang, Haobo
Shen, Xiaobo
Tsang, Ivor W.
description Exabytes of data are generated daily by humans, leading to the growing needs for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there have been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfil this mission and delineate future research directions and new applications.
doi_str_mv 10.1109/TPAMI.2021.3119334
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9568738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9568738</ieee_id><sourcerecordid>2721429577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-bfdbcbb5feefa48ae5459a26dcbcca1694e3fe88f5ec743284ba70668c4779fc3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQQC0EoqXwB2CJxIKEEvwZ22NVFaiUCoYwW457LqnSpNjNwL8npRUD0w333un0ELolOCME66fyfbpcZBRTkjFCNGP8DI2HqVMmmD5HY0xymipF1QhdxbjBmHCB2SUaMZ4zyaQao8fyE5L5FsK6btdJGaBdxaTzybJv9nVa2AqapAAb2mF9jS68bSLcnOYEfTzPy9lrWry9LGbTInWMqn1a-VXlqkp4AG-5siC40JbmK1c5Z0muOTAPSnkBTvJB4ZWVOM-V41Jq79gEPRzv7kL31UPcm20dHTSNbaHro6FCEUWJInhA7_-hm64P7fCdoZISTrWQcqDokXKhizGAN7tQb234NgSbQ0rzm9IcUppTykG6O0o1APwJWuRKMsV-AANBbIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721429577</pqid></control><display><type>article</type><title>The Emerging Trends of Multi-Label Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Weiwei ; Wang, Haobo ; Shen, Xiaobo ; Tsang, Ivor W.</creator><creatorcontrib>Liu, Weiwei ; Wang, Haobo ; Shen, Xiaobo ; Tsang, Ivor W.</creatorcontrib><description>Exabytes of data are generated daily by humans, leading to the growing needs for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there have been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfil this mission and delineate future research directions and new applications.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3119334</identifier><identifier>PMID: 34637378</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Big Data ; Classification ; Correlation ; Deep learning ; deep learning for multi-label learning ; Extreme multi-label learning ; Extreme values ; Machine learning ; multi-label learning with limited supervision ; new applications ; Noise measurement ; online multi-label learning ; statistical multi-label learning ; Task analysis ; Testing ; Training ; Trends</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-11, Vol.44 (11), p.7955-7974</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-bfdbcbb5feefa48ae5459a26dcbcca1694e3fe88f5ec743284ba70668c4779fc3</citedby><cites>FETCH-LOGICAL-c328t-bfdbcbb5feefa48ae5459a26dcbcca1694e3fe88f5ec743284ba70668c4779fc3</cites><orcidid>0000-0001-8586-3048 ; 0000-0001-8494-4532 ; 0000-0003-2450-3369 ; 0000-0003-2211-8176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9568738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9568738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Weiwei</creatorcontrib><creatorcontrib>Wang, Haobo</creatorcontrib><creatorcontrib>Shen, Xiaobo</creatorcontrib><creatorcontrib>Tsang, Ivor W.</creatorcontrib><title>The Emerging Trends of Multi-Label Learning</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Exabytes of data are generated daily by humans, leading to the growing needs for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there have been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfil this mission and delineate future research directions and new applications.</description><subject>Big Data</subject><subject>Classification</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>deep learning for multi-label learning</subject><subject>Extreme multi-label learning</subject><subject>Extreme values</subject><subject>Machine learning</subject><subject>multi-label learning with limited supervision</subject><subject>new applications</subject><subject>Noise measurement</subject><subject>online multi-label learning</subject><subject>statistical multi-label learning</subject><subject>Task analysis</subject><subject>Testing</subject><subject>Training</subject><subject>Trends</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQQC0EoqXwB2CJxIKEEvwZ22NVFaiUCoYwW457LqnSpNjNwL8npRUD0w333un0ELolOCME66fyfbpcZBRTkjFCNGP8DI2HqVMmmD5HY0xymipF1QhdxbjBmHCB2SUaMZ4zyaQao8fyE5L5FsK6btdJGaBdxaTzybJv9nVa2AqapAAb2mF9jS68bSLcnOYEfTzPy9lrWry9LGbTInWMqn1a-VXlqkp4AG-5siC40JbmK1c5Z0muOTAPSnkBTvJB4ZWVOM-V41Jq79gEPRzv7kL31UPcm20dHTSNbaHro6FCEUWJInhA7_-hm64P7fCdoZISTrWQcqDokXKhizGAN7tQb234NgSbQ0rzm9IcUppTykG6O0o1APwJWuRKMsV-AANBbIs</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Liu, Weiwei</creator><creator>Wang, Haobo</creator><creator>Shen, Xiaobo</creator><creator>Tsang, Ivor W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8586-3048</orcidid><orcidid>https://orcid.org/0000-0001-8494-4532</orcidid><orcidid>https://orcid.org/0000-0003-2450-3369</orcidid><orcidid>https://orcid.org/0000-0003-2211-8176</orcidid></search><sort><creationdate>20221101</creationdate><title>The Emerging Trends of Multi-Label Learning</title><author>Liu, Weiwei ; Wang, Haobo ; Shen, Xiaobo ; Tsang, Ivor W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-bfdbcbb5feefa48ae5459a26dcbcca1694e3fe88f5ec743284ba70668c4779fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Big Data</topic><topic>Classification</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>deep learning for multi-label learning</topic><topic>Extreme multi-label learning</topic><topic>Extreme values</topic><topic>Machine learning</topic><topic>multi-label learning with limited supervision</topic><topic>new applications</topic><topic>Noise measurement</topic><topic>online multi-label learning</topic><topic>statistical multi-label learning</topic><topic>Task analysis</topic><topic>Testing</topic><topic>Training</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Weiwei</creatorcontrib><creatorcontrib>Wang, Haobo</creatorcontrib><creatorcontrib>Shen, Xiaobo</creatorcontrib><creatorcontrib>Tsang, Ivor W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Weiwei</au><au>Wang, Haobo</au><au>Shen, Xiaobo</au><au>Tsang, Ivor W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Emerging Trends of Multi-Label Learning</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>44</volume><issue>11</issue><spage>7955</spage><epage>7974</epage><pages>7955-7974</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Exabytes of data are generated daily by humans, leading to the growing needs for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there have been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfil this mission and delineate future research directions and new applications.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34637378</pmid><doi>10.1109/TPAMI.2021.3119334</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8586-3048</orcidid><orcidid>https://orcid.org/0000-0001-8494-4532</orcidid><orcidid>https://orcid.org/0000-0003-2450-3369</orcidid><orcidid>https://orcid.org/0000-0003-2211-8176</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2022-11, Vol.44 (11), p.7955-7974
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_9568738
source IEEE Electronic Library (IEL)
subjects Big Data
Classification
Correlation
Deep learning
deep learning for multi-label learning
Extreme multi-label learning
Extreme values
Machine learning
multi-label learning with limited supervision
new applications
Noise measurement
online multi-label learning
statistical multi-label learning
Task analysis
Testing
Training
Trends
title The Emerging Trends of Multi-Label Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Emerging%20Trends%20of%20Multi-Label%20Learning&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Weiwei&rft.date=2022-11-01&rft.volume=44&rft.issue=11&rft.spage=7955&rft.epage=7974&rft.pages=7955-7974&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3119334&rft_dat=%3Cproquest_RIE%3E2721429577%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721429577&rft_id=info:pmid/34637378&rft_ieee_id=9568738&rfr_iscdi=true