The Emerging Trends of Multi-Label Learning
Exabytes of data are generated daily by humans, leading to the growing needs for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classificatio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2022-11, Vol.44 (11), p.7955-7974 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7974 |
---|---|
container_issue | 11 |
container_start_page | 7955 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Liu, Weiwei Wang, Haobo Shen, Xiaobo Tsang, Ivor W. |
description | Exabytes of data are generated daily by humans, leading to the growing needs for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there have been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfil this mission and delineate future research directions and new applications. |
doi_str_mv | 10.1109/TPAMI.2021.3119334 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9568738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9568738</ieee_id><sourcerecordid>2721429577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-bfdbcbb5feefa48ae5459a26dcbcca1694e3fe88f5ec743284ba70668c4779fc3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQQC0EoqXwB2CJxIKEEvwZ22NVFaiUCoYwW457LqnSpNjNwL8npRUD0w333un0ELolOCME66fyfbpcZBRTkjFCNGP8DI2HqVMmmD5HY0xymipF1QhdxbjBmHCB2SUaMZ4zyaQao8fyE5L5FsK6btdJGaBdxaTzybJv9nVa2AqapAAb2mF9jS68bSLcnOYEfTzPy9lrWry9LGbTInWMqn1a-VXlqkp4AG-5siC40JbmK1c5Z0muOTAPSnkBTvJB4ZWVOM-V41Jq79gEPRzv7kL31UPcm20dHTSNbaHro6FCEUWJInhA7_-hm64P7fCdoZISTrWQcqDokXKhizGAN7tQb234NgSbQ0rzm9IcUppTykG6O0o1APwJWuRKMsV-AANBbIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721429577</pqid></control><display><type>article</type><title>The Emerging Trends of Multi-Label Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Weiwei ; Wang, Haobo ; Shen, Xiaobo ; Tsang, Ivor W.</creator><creatorcontrib>Liu, Weiwei ; Wang, Haobo ; Shen, Xiaobo ; Tsang, Ivor W.</creatorcontrib><description>Exabytes of data are generated daily by humans, leading to the growing needs for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there have been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfil this mission and delineate future research directions and new applications.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3119334</identifier><identifier>PMID: 34637378</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Big Data ; Classification ; Correlation ; Deep learning ; deep learning for multi-label learning ; Extreme multi-label learning ; Extreme values ; Machine learning ; multi-label learning with limited supervision ; new applications ; Noise measurement ; online multi-label learning ; statistical multi-label learning ; Task analysis ; Testing ; Training ; Trends</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-11, Vol.44 (11), p.7955-7974</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-bfdbcbb5feefa48ae5459a26dcbcca1694e3fe88f5ec743284ba70668c4779fc3</citedby><cites>FETCH-LOGICAL-c328t-bfdbcbb5feefa48ae5459a26dcbcca1694e3fe88f5ec743284ba70668c4779fc3</cites><orcidid>0000-0001-8586-3048 ; 0000-0001-8494-4532 ; 0000-0003-2450-3369 ; 0000-0003-2211-8176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9568738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9568738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Weiwei</creatorcontrib><creatorcontrib>Wang, Haobo</creatorcontrib><creatorcontrib>Shen, Xiaobo</creatorcontrib><creatorcontrib>Tsang, Ivor W.</creatorcontrib><title>The Emerging Trends of Multi-Label Learning</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Exabytes of data are generated daily by humans, leading to the growing needs for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there have been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfil this mission and delineate future research directions and new applications.</description><subject>Big Data</subject><subject>Classification</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>deep learning for multi-label learning</subject><subject>Extreme multi-label learning</subject><subject>Extreme values</subject><subject>Machine learning</subject><subject>multi-label learning with limited supervision</subject><subject>new applications</subject><subject>Noise measurement</subject><subject>online multi-label learning</subject><subject>statistical multi-label learning</subject><subject>Task analysis</subject><subject>Testing</subject><subject>Training</subject><subject>Trends</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQQC0EoqXwB2CJxIKEEvwZ22NVFaiUCoYwW457LqnSpNjNwL8npRUD0w333un0ELolOCME66fyfbpcZBRTkjFCNGP8DI2HqVMmmD5HY0xymipF1QhdxbjBmHCB2SUaMZ4zyaQao8fyE5L5FsK6btdJGaBdxaTzybJv9nVa2AqapAAb2mF9jS68bSLcnOYEfTzPy9lrWry9LGbTInWMqn1a-VXlqkp4AG-5siC40JbmK1c5Z0muOTAPSnkBTvJB4ZWVOM-V41Jq79gEPRzv7kL31UPcm20dHTSNbaHro6FCEUWJInhA7_-hm64P7fCdoZISTrWQcqDokXKhizGAN7tQb234NgSbQ0rzm9IcUppTykG6O0o1APwJWuRKMsV-AANBbIs</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Liu, Weiwei</creator><creator>Wang, Haobo</creator><creator>Shen, Xiaobo</creator><creator>Tsang, Ivor W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8586-3048</orcidid><orcidid>https://orcid.org/0000-0001-8494-4532</orcidid><orcidid>https://orcid.org/0000-0003-2450-3369</orcidid><orcidid>https://orcid.org/0000-0003-2211-8176</orcidid></search><sort><creationdate>20221101</creationdate><title>The Emerging Trends of Multi-Label Learning</title><author>Liu, Weiwei ; Wang, Haobo ; Shen, Xiaobo ; Tsang, Ivor W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-bfdbcbb5feefa48ae5459a26dcbcca1694e3fe88f5ec743284ba70668c4779fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Big Data</topic><topic>Classification</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>deep learning for multi-label learning</topic><topic>Extreme multi-label learning</topic><topic>Extreme values</topic><topic>Machine learning</topic><topic>multi-label learning with limited supervision</topic><topic>new applications</topic><topic>Noise measurement</topic><topic>online multi-label learning</topic><topic>statistical multi-label learning</topic><topic>Task analysis</topic><topic>Testing</topic><topic>Training</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Weiwei</creatorcontrib><creatorcontrib>Wang, Haobo</creatorcontrib><creatorcontrib>Shen, Xiaobo</creatorcontrib><creatorcontrib>Tsang, Ivor W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Weiwei</au><au>Wang, Haobo</au><au>Shen, Xiaobo</au><au>Tsang, Ivor W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Emerging Trends of Multi-Label Learning</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>44</volume><issue>11</issue><spage>7955</spage><epage>7974</epage><pages>7955-7974</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Exabytes of data are generated daily by humans, leading to the growing needs for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there have been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfil this mission and delineate future research directions and new applications.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34637378</pmid><doi>10.1109/TPAMI.2021.3119334</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8586-3048</orcidid><orcidid>https://orcid.org/0000-0001-8494-4532</orcidid><orcidid>https://orcid.org/0000-0003-2450-3369</orcidid><orcidid>https://orcid.org/0000-0003-2211-8176</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-11, Vol.44 (11), p.7955-7974 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_ieee_primary_9568738 |
source | IEEE Electronic Library (IEL) |
subjects | Big Data Classification Correlation Deep learning deep learning for multi-label learning Extreme multi-label learning Extreme values Machine learning multi-label learning with limited supervision new applications Noise measurement online multi-label learning statistical multi-label learning Task analysis Testing Training Trends |
title | The Emerging Trends of Multi-Label Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Emerging%20Trends%20of%20Multi-Label%20Learning&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Weiwei&rft.date=2022-11-01&rft.volume=44&rft.issue=11&rft.spage=7955&rft.epage=7974&rft.pages=7955-7974&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3119334&rft_dat=%3Cproquest_RIE%3E2721429577%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721429577&rft_id=info:pmid/34637378&rft_ieee_id=9568738&rfr_iscdi=true |