Regret of Age-of-Information Bandits

We consider a system with a single source that measures/tracks a time-varying quantity and periodically attempts to report these measurements to a monitoring station. Each update from the source has to be scheduled on one of K available communication channels. The probability of success of each at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2022-01, Vol.70 (1), p.87-100
Hauptverfasser: Fatale, Santosh, Bhandari, Kavya, Narula, Urvidh, Moharir, Sharayu, Hanawal, Manjesh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1
container_start_page 87
container_title IEEE transactions on communications
container_volume 70
creator Fatale, Santosh
Bhandari, Kavya
Narula, Urvidh
Moharir, Sharayu
Hanawal, Manjesh K.
description We consider a system with a single source that measures/tracks a time-varying quantity and periodically attempts to report these measurements to a monitoring station. Each update from the source has to be scheduled on one of K available communication channels. The probability of success of each attempted communication is a function of the channel used. This function is unknown to the scheduler. The metric of interest is the Age-of-Information (AoI), formally defined as the time elapsed since the destination received the recent most update from the source. We model our scheduling problem as a variant of the multi-arm bandit problem with communication channels as arms. We characterize a lower bound on the AoI regret achievable by any policy and characterize the performance of UCB, Thompson Sampling, and their variants. Our analytical results show that UCB and Thompson sampling are order-optimal for AoI bandits. In addition, we propose novel policies which, unlike UCB and Thompson Sampling, use the current AoI to make scheduling decisions. Via simulations, we show the proposed AoI-aware policies outperform existing AoI-agnostic policies.
doi_str_mv 10.1109/TCOMM.2021.3118037
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9559999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9559999</ieee_id><sourcerecordid>2619589179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-41fe67ae6b7555c3b4dbf7631d3330287089941993ec381a1b453bff0a6f44613</originalsourceid><addsrcrecordid>eNo9kMtOAkEQRTtGExH9Ad2Q6LaxaqqfSyQ-SCAkBtednqGbDJEZ7B4X_r2DEO-mNvfUTQ5jtwhjRLCPq-lysRgXUOCYEA2QPmMDlNJwMFKfswGABa60NpfsKuctAAggGrCH97BJoRu1cTTZBN5GPmtim3a-q9tm9OSbdd3la3YR_WcON6c7ZB8vz6vpG58vX2fTyZxXhZUdFxiD0j6oUkspKyrFuoxaEa6JCAqjwVgr0FoKFRn0WApJZYzgVRRCIQ3Z_fHvPrVf3yF3btt-p6afdIVCK41FbftWcWxVqc05hej2qd759OMQ3MGG-7PhDjbcyUYP3R2hOoTwD1gpbR_6BcTaWIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619589179</pqid></control><display><type>article</type><title>Regret of Age-of-Information Bandits</title><source>IEEE Electronic Library (IEL)</source><creator>Fatale, Santosh ; Bhandari, Kavya ; Narula, Urvidh ; Moharir, Sharayu ; Hanawal, Manjesh K.</creator><creatorcontrib>Fatale, Santosh ; Bhandari, Kavya ; Narula, Urvidh ; Moharir, Sharayu ; Hanawal, Manjesh K.</creatorcontrib><description>We consider a system with a single source that measures/tracks a time-varying quantity and periodically attempts to report these measurements to a monitoring station. Each update from the source has to be scheduled on one of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;K &lt;/tex-math&gt;&lt;/inline-formula&gt; available communication channels. The probability of success of each attempted communication is a function of the channel used. This function is unknown to the scheduler. The metric of interest is the Age-of-Information (AoI), formally defined as the time elapsed since the destination received the recent most update from the source. We model our scheduling problem as a variant of the multi-arm bandit problem with communication channels as arms. We characterize a lower bound on the AoI regret achievable by any policy and characterize the performance of UCB, Thompson Sampling, and their variants. Our analytical results show that UCB and Thompson sampling are order-optimal for AoI bandits. In addition, we propose novel policies which, unlike UCB and Thompson Sampling, use the current AoI to make scheduling decisions. Via simulations, we show the proposed AoI-aware policies outperform existing AoI-agnostic policies.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2021.3118037</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>age-of-information (AOI) ; Channels ; communication channel ; Communication channels ; internet-of-things (IOT) ; Lower bounds ; Measurement ; Monitoring ; multi-armed bandit (MAB) ; Multi-armed bandit problems ; Policies ; Sampling ; Schedules ; Scheduling ; Scheduling algorithms ; sensors ; Time measurement ; Time-varying systems ; Upper bound</subject><ispartof>IEEE transactions on communications, 2022-01, Vol.70 (1), p.87-100</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-41fe67ae6b7555c3b4dbf7631d3330287089941993ec381a1b453bff0a6f44613</citedby><cites>FETCH-LOGICAL-c295t-41fe67ae6b7555c3b4dbf7631d3330287089941993ec381a1b453bff0a6f44613</cites><orcidid>0000-0001-5688-4640 ; 0000-0001-9393-9276 ; 0000-0002-1807-5487 ; 0000-0001-6328-1709 ; 0000-0002-7417-3882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9559999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9559999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fatale, Santosh</creatorcontrib><creatorcontrib>Bhandari, Kavya</creatorcontrib><creatorcontrib>Narula, Urvidh</creatorcontrib><creatorcontrib>Moharir, Sharayu</creatorcontrib><creatorcontrib>Hanawal, Manjesh K.</creatorcontrib><title>Regret of Age-of-Information Bandits</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>We consider a system with a single source that measures/tracks a time-varying quantity and periodically attempts to report these measurements to a monitoring station. Each update from the source has to be scheduled on one of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;K &lt;/tex-math&gt;&lt;/inline-formula&gt; available communication channels. The probability of success of each attempted communication is a function of the channel used. This function is unknown to the scheduler. The metric of interest is the Age-of-Information (AoI), formally defined as the time elapsed since the destination received the recent most update from the source. We model our scheduling problem as a variant of the multi-arm bandit problem with communication channels as arms. We characterize a lower bound on the AoI regret achievable by any policy and characterize the performance of UCB, Thompson Sampling, and their variants. Our analytical results show that UCB and Thompson sampling are order-optimal for AoI bandits. In addition, we propose novel policies which, unlike UCB and Thompson Sampling, use the current AoI to make scheduling decisions. Via simulations, we show the proposed AoI-aware policies outperform existing AoI-agnostic policies.</description><subject>age-of-information (AOI)</subject><subject>Channels</subject><subject>communication channel</subject><subject>Communication channels</subject><subject>internet-of-things (IOT)</subject><subject>Lower bounds</subject><subject>Measurement</subject><subject>Monitoring</subject><subject>multi-armed bandit (MAB)</subject><subject>Multi-armed bandit problems</subject><subject>Policies</subject><subject>Sampling</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Scheduling algorithms</subject><subject>sensors</subject><subject>Time measurement</subject><subject>Time-varying systems</subject><subject>Upper bound</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOAkEQRTtGExH9Ad2Q6LaxaqqfSyQ-SCAkBtednqGbDJEZ7B4X_r2DEO-mNvfUTQ5jtwhjRLCPq-lysRgXUOCYEA2QPmMDlNJwMFKfswGABa60NpfsKuctAAggGrCH97BJoRu1cTTZBN5GPmtim3a-q9tm9OSbdd3la3YR_WcON6c7ZB8vz6vpG58vX2fTyZxXhZUdFxiD0j6oUkspKyrFuoxaEa6JCAqjwVgr0FoKFRn0WApJZYzgVRRCIQ3Z_fHvPrVf3yF3btt-p6afdIVCK41FbftWcWxVqc05hej2qd759OMQ3MGG-7PhDjbcyUYP3R2hOoTwD1gpbR_6BcTaWIY</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Fatale, Santosh</creator><creator>Bhandari, Kavya</creator><creator>Narula, Urvidh</creator><creator>Moharir, Sharayu</creator><creator>Hanawal, Manjesh K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5688-4640</orcidid><orcidid>https://orcid.org/0000-0001-9393-9276</orcidid><orcidid>https://orcid.org/0000-0002-1807-5487</orcidid><orcidid>https://orcid.org/0000-0001-6328-1709</orcidid><orcidid>https://orcid.org/0000-0002-7417-3882</orcidid></search><sort><creationdate>202201</creationdate><title>Regret of Age-of-Information Bandits</title><author>Fatale, Santosh ; Bhandari, Kavya ; Narula, Urvidh ; Moharir, Sharayu ; Hanawal, Manjesh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-41fe67ae6b7555c3b4dbf7631d3330287089941993ec381a1b453bff0a6f44613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>age-of-information (AOI)</topic><topic>Channels</topic><topic>communication channel</topic><topic>Communication channels</topic><topic>internet-of-things (IOT)</topic><topic>Lower bounds</topic><topic>Measurement</topic><topic>Monitoring</topic><topic>multi-armed bandit (MAB)</topic><topic>Multi-armed bandit problems</topic><topic>Policies</topic><topic>Sampling</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Scheduling algorithms</topic><topic>sensors</topic><topic>Time measurement</topic><topic>Time-varying systems</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatale, Santosh</creatorcontrib><creatorcontrib>Bhandari, Kavya</creatorcontrib><creatorcontrib>Narula, Urvidh</creatorcontrib><creatorcontrib>Moharir, Sharayu</creatorcontrib><creatorcontrib>Hanawal, Manjesh K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fatale, Santosh</au><au>Bhandari, Kavya</au><au>Narula, Urvidh</au><au>Moharir, Sharayu</au><au>Hanawal, Manjesh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regret of Age-of-Information Bandits</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2022-01</date><risdate>2022</risdate><volume>70</volume><issue>1</issue><spage>87</spage><epage>100</epage><pages>87-100</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>We consider a system with a single source that measures/tracks a time-varying quantity and periodically attempts to report these measurements to a monitoring station. Each update from the source has to be scheduled on one of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;K &lt;/tex-math&gt;&lt;/inline-formula&gt; available communication channels. The probability of success of each attempted communication is a function of the channel used. This function is unknown to the scheduler. The metric of interest is the Age-of-Information (AoI), formally defined as the time elapsed since the destination received the recent most update from the source. We model our scheduling problem as a variant of the multi-arm bandit problem with communication channels as arms. We characterize a lower bound on the AoI regret achievable by any policy and characterize the performance of UCB, Thompson Sampling, and their variants. Our analytical results show that UCB and Thompson sampling are order-optimal for AoI bandits. In addition, we propose novel policies which, unlike UCB and Thompson Sampling, use the current AoI to make scheduling decisions. Via simulations, we show the proposed AoI-aware policies outperform existing AoI-agnostic policies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2021.3118037</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5688-4640</orcidid><orcidid>https://orcid.org/0000-0001-9393-9276</orcidid><orcidid>https://orcid.org/0000-0002-1807-5487</orcidid><orcidid>https://orcid.org/0000-0001-6328-1709</orcidid><orcidid>https://orcid.org/0000-0002-7417-3882</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2022-01, Vol.70 (1), p.87-100
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_9559999
source IEEE Electronic Library (IEL)
subjects age-of-information (AOI)
Channels
communication channel
Communication channels
internet-of-things (IOT)
Lower bounds
Measurement
Monitoring
multi-armed bandit (MAB)
Multi-armed bandit problems
Policies
Sampling
Schedules
Scheduling
Scheduling algorithms
sensors
Time measurement
Time-varying systems
Upper bound
title Regret of Age-of-Information Bandits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regret%20of%20Age-of-Information%20Bandits&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Fatale,%20Santosh&rft.date=2022-01&rft.volume=70&rft.issue=1&rft.spage=87&rft.epage=100&rft.pages=87-100&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2021.3118037&rft_dat=%3Cproquest_RIE%3E2619589179%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619589179&rft_id=info:pmid/&rft_ieee_id=9559999&rfr_iscdi=true