Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic

Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-10, Vol.21 (19), p.21675-21687
Hauptverfasser: Liu, Wei, Xia, Xin, Xiong, Lu, Lu, Yishi, Gao, Letian, Yu, Zhuoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21687
container_issue 19
container_start_page 21675
container_title IEEE sensors journal
container_volume 21
creator Liu, Wei
Xia, Xin
Xiong, Lu
Lu, Yishi
Gao, Letian
Yu, Zhuoping
description Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite system (GNSS) and an inertial measurement unit (IMU). First, to reject the gravity components induced by the vehicle roll and pitch, a vehicle attitude angle observer based on the square-root cubature Kalman filter (SCKF) is designed to estimate the roll and pitch. A novel feedback mechanism based on the vehicle intrinsic information (the steering angle and wheel speed) for the pitch and roll is designed. Then, the integration of the reverse smoothing and grey prediction is adopted to compensate for the cumulative velocity errors during the relatively low sampling interval of the GNSS. Moreover, the GNSS signal delay has been addressed by an estimation-prediction integrated framework. Finally, the results confirm that the proposed method can estimate the VSA under both the slalom and double lane change (DLC) scenarios.
doi_str_mv 10.1109/JSEN.2021.3059050
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9556130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9556130</ieee_id><sourcerecordid>2578235909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a1081b6602b5fbade56d50d6e7b524d92422e8242cdd9dcec1ddd9f07a2c9c8b3</originalsourceid><addsrcrecordid>eNqNkM9PwyAUxxujiXP6BxgvTTyazgcdpRyXZv7K1MPU6Kmh8LqxbO0EGuN_L3VGr17gkff5POAbRacERoSAuLybTx9GFCgZpcAEMNiLBoSxPCF8nO_3dQrJOOWvh9GRcysAIjjjg-ht0vl2Iz3q-AWXRq0xnhuNbm228aRZhOPUeRMA0zZx0TYuNK1pFoFaNHId36N0ncUNNj4ultJK5UM_KOo4Oqjl2uHJzz6Mnq-mT8VNMnu8vi0ms0SlTPhEEshJlWVAK1ZXUiPLNAOdIa8YHWtBx5RiHlaltdAKFdGhqIFLqoTKq3QYne_mbm373qHz5artbHibKynjOQ23gAgU2VHKts5ZrMutDd-ynyWBsk-w7BMs-wTLnwSDc7FzPrBqa6cMNgp_PQDgQDnJQgEZC3T-f7ow_jvSou0aH9SznWoQ_xTBWEZSSL8AzKuO2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578235909</pqid></control><display><type>article</type><title>Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Wei ; Xia, Xin ; Xiong, Lu ; Lu, Yishi ; Gao, Letian ; Yu, Zhuoping</creator><creatorcontrib>Liu, Wei ; Xia, Xin ; Xiong, Lu ; Lu, Yishi ; Gao, Letian ; Yu, Zhuoping</creatorcontrib><description>Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite system (GNSS) and an inertial measurement unit (IMU). First, to reject the gravity components induced by the vehicle roll and pitch, a vehicle attitude angle observer based on the square-root cubature Kalman filter (SCKF) is designed to estimate the roll and pitch. A novel feedback mechanism based on the vehicle intrinsic information (the steering angle and wheel speed) for the pitch and roll is designed. Then, the integration of the reverse smoothing and grey prediction is adopted to compensate for the cumulative velocity errors during the relatively low sampling interval of the GNSS. Moreover, the GNSS signal delay has been addressed by an estimation-prediction integrated framework. Finally, the results confirm that the proposed method can estimate the VSA under both the slalom and double lane change (DLC) scenarios.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3059050</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Automated vehicle ; Automation ; Delays ; Dynamic control ; Engineering ; Engineering, Electrical &amp; Electronic ; Estimation ; Global navigation satellite system ; Grey prediction ; Inertial platforms ; information fusion ; Instruments &amp; Instrumentation ; Kalman filters ; Lane changing ; low sampling rate ; measurement signal delay ; Observers ; Physical Sciences ; Physics ; Physics, Applied ; Pitch (inclination) ; Prediction algorithms ; Rolling motion ; Science &amp; Technology ; Sideslip ; Signal delay ; Signal measurement ; Smoothing methods ; Steering ; Technology ; Velocity errors ; Wheels</subject><ispartof>IEEE sensors journal, 2021-10, Vol.21 (19), p.21675-21687</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>125</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000702716000065</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c359t-a1081b6602b5fbade56d50d6e7b524d92422e8242cdd9dcec1ddd9f07a2c9c8b3</citedby><cites>FETCH-LOGICAL-c359t-a1081b6602b5fbade56d50d6e7b524d92422e8242cdd9dcec1ddd9f07a2c9c8b3</cites><orcidid>0000-0002-1673-2658 ; 0000-0002-8775-0052 ; 0000-0003-4251-5793 ; 0000-0002-5108-7578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9556130$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,39267,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9556130$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xia, Xin</creatorcontrib><creatorcontrib>Xiong, Lu</creatorcontrib><creatorcontrib>Lu, Yishi</creatorcontrib><creatorcontrib>Gao, Letian</creatorcontrib><creatorcontrib>Yu, Zhuoping</creatorcontrib><title>Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><addtitle>IEEE SENS J</addtitle><description>Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite system (GNSS) and an inertial measurement unit (IMU). First, to reject the gravity components induced by the vehicle roll and pitch, a vehicle attitude angle observer based on the square-root cubature Kalman filter (SCKF) is designed to estimate the roll and pitch. A novel feedback mechanism based on the vehicle intrinsic information (the steering angle and wheel speed) for the pitch and roll is designed. Then, the integration of the reverse smoothing and grey prediction is adopted to compensate for the cumulative velocity errors during the relatively low sampling interval of the GNSS. Moreover, the GNSS signal delay has been addressed by an estimation-prediction integrated framework. Finally, the results confirm that the proposed method can estimate the VSA under both the slalom and double lane change (DLC) scenarios.</description><subject>Automated vehicle</subject><subject>Automation</subject><subject>Delays</subject><subject>Dynamic control</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Estimation</subject><subject>Global navigation satellite system</subject><subject>Grey prediction</subject><subject>Inertial platforms</subject><subject>information fusion</subject><subject>Instruments &amp; Instrumentation</subject><subject>Kalman filters</subject><subject>Lane changing</subject><subject>low sampling rate</subject><subject>measurement signal delay</subject><subject>Observers</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Pitch (inclination)</subject><subject>Prediction algorithms</subject><subject>Rolling motion</subject><subject>Science &amp; Technology</subject><subject>Sideslip</subject><subject>Signal delay</subject><subject>Signal measurement</subject><subject>Smoothing methods</subject><subject>Steering</subject><subject>Technology</subject><subject>Velocity errors</subject><subject>Wheels</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkM9PwyAUxxujiXP6BxgvTTyazgcdpRyXZv7K1MPU6Kmh8LqxbO0EGuN_L3VGr17gkff5POAbRacERoSAuLybTx9GFCgZpcAEMNiLBoSxPCF8nO_3dQrJOOWvh9GRcysAIjjjg-ht0vl2Iz3q-AWXRq0xnhuNbm228aRZhOPUeRMA0zZx0TYuNK1pFoFaNHId36N0ncUNNj4ultJK5UM_KOo4Oqjl2uHJzz6Mnq-mT8VNMnu8vi0ms0SlTPhEEshJlWVAK1ZXUiPLNAOdIa8YHWtBx5RiHlaltdAKFdGhqIFLqoTKq3QYne_mbm373qHz5artbHibKynjOQ23gAgU2VHKts5ZrMutDd-ynyWBsk-w7BMs-wTLnwSDc7FzPrBqa6cMNgp_PQDgQDnJQgEZC3T-f7ow_jvSou0aH9SznWoQ_xTBWEZSSL8AzKuO2A</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Liu, Wei</creator><creator>Xia, Xin</creator><creator>Xiong, Lu</creator><creator>Lu, Yishi</creator><creator>Gao, Letian</creator><creator>Yu, Zhuoping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1673-2658</orcidid><orcidid>https://orcid.org/0000-0002-8775-0052</orcidid><orcidid>https://orcid.org/0000-0003-4251-5793</orcidid><orcidid>https://orcid.org/0000-0002-5108-7578</orcidid></search><sort><creationdate>20211001</creationdate><title>Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic</title><author>Liu, Wei ; Xia, Xin ; Xiong, Lu ; Lu, Yishi ; Gao, Letian ; Yu, Zhuoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a1081b6602b5fbade56d50d6e7b524d92422e8242cdd9dcec1ddd9f07a2c9c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automated vehicle</topic><topic>Automation</topic><topic>Delays</topic><topic>Dynamic control</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Estimation</topic><topic>Global navigation satellite system</topic><topic>Grey prediction</topic><topic>Inertial platforms</topic><topic>information fusion</topic><topic>Instruments &amp; Instrumentation</topic><topic>Kalman filters</topic><topic>Lane changing</topic><topic>low sampling rate</topic><topic>measurement signal delay</topic><topic>Observers</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Pitch (inclination)</topic><topic>Prediction algorithms</topic><topic>Rolling motion</topic><topic>Science &amp; Technology</topic><topic>Sideslip</topic><topic>Signal delay</topic><topic>Signal measurement</topic><topic>Smoothing methods</topic><topic>Steering</topic><topic>Technology</topic><topic>Velocity errors</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xia, Xin</creatorcontrib><creatorcontrib>Xiong, Lu</creatorcontrib><creatorcontrib>Lu, Yishi</creatorcontrib><creatorcontrib>Gao, Letian</creatorcontrib><creatorcontrib>Yu, Zhuoping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Wei</au><au>Xia, Xin</au><au>Xiong, Lu</au><au>Lu, Yishi</au><au>Gao, Letian</au><au>Yu, Zhuoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><stitle>IEEE SENS J</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>21</volume><issue>19</issue><spage>21675</spage><epage>21687</epage><pages>21675-21687</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite system (GNSS) and an inertial measurement unit (IMU). First, to reject the gravity components induced by the vehicle roll and pitch, a vehicle attitude angle observer based on the square-root cubature Kalman filter (SCKF) is designed to estimate the roll and pitch. A novel feedback mechanism based on the vehicle intrinsic information (the steering angle and wheel speed) for the pitch and roll is designed. Then, the integration of the reverse smoothing and grey prediction is adopted to compensate for the cumulative velocity errors during the relatively low sampling interval of the GNSS. Moreover, the GNSS signal delay has been addressed by an estimation-prediction integrated framework. Finally, the results confirm that the proposed method can estimate the VSA under both the slalom and double lane change (DLC) scenarios.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3059050</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1673-2658</orcidid><orcidid>https://orcid.org/0000-0002-8775-0052</orcidid><orcidid>https://orcid.org/0000-0003-4251-5793</orcidid><orcidid>https://orcid.org/0000-0002-5108-7578</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-10, Vol.21 (19), p.21675-21687
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9556130
source IEEE Electronic Library (IEL)
subjects Automated vehicle
Automation
Delays
Dynamic control
Engineering
Engineering, Electrical & Electronic
Estimation
Global navigation satellite system
Grey prediction
Inertial platforms
information fusion
Instruments & Instrumentation
Kalman filters
Lane changing
low sampling rate
measurement signal delay
Observers
Physical Sciences
Physics
Physics, Applied
Pitch (inclination)
Prediction algorithms
Rolling motion
Science & Technology
Sideslip
Signal delay
Signal measurement
Smoothing methods
Steering
Technology
Velocity errors
Wheels
title Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Vehicle%20Sideslip%20Angle%20Estimation%20Considering%20Signal%20Measurement%20Characteristic&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Wei&rft.date=2021-10-01&rft.volume=21&rft.issue=19&rft.spage=21675&rft.epage=21687&rft.pages=21675-21687&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3059050&rft_dat=%3Cproquest_RIE%3E2578235909%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578235909&rft_id=info:pmid/&rft_ieee_id=9556130&rfr_iscdi=true