A Method of Complementing Missing Power Data in Low-Voltage Stations Based on Improved Deep Convolutional Self-Encoding Network
The irregularities in the collection and transmission of user power data in the low-voltage power distribution station area have led to errors in the subsequent application analysis of the station area. In order to ensure the integrity of power data in low-voltage stations, a multi-user power missin...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.57565-57573 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57573 |
---|---|
container_issue | |
container_start_page | 57565 |
container_title | IEEE access |
container_volume | 10 |
creator | Zhao, Hongshan Cui, Yangyang Song, Wei Qu, Yuehan Sun, Mengxue |
description | The irregularities in the collection and transmission of user power data in the low-voltage power distribution station area have led to errors in the subsequent application analysis of the station area. In order to ensure the integrity of power data in low-voltage stations, a multi-user power missing data complement method based on improved deep convolutional self-encoding is proposed. First, according to the characteristics of the lack of multi-user power data in the low-voltage station area, the power data is formed into a spatio-temporal tensor data format that can be used for one-dimensional convolution operations. Then use the encoding and decoding capabilities of the improved deep convolutional self-encoding network to realize the reconstruction of missing data, and optimize the network structure by introducing residual learning and batch normalization (BN). Finally, based on the proposed method, two cases of random and continuous loss of user power data in a certain area are complemented. The results show that the method can accurately complete 40% of randomly missing data and 2 consecutive days of missing data. The proposed method has improved completion accuracy compared with traditional methods to varying degrees. |
doi_str_mv | 10.1109/ACCESS.2021.3116675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9552884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9552884</ieee_id><doaj_id>oai_doaj_org_article_a4c67e65742e4066be43c318d163e47d</doaj_id><sourcerecordid>2674075423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-53c888170af517a49837c13feab791124660ef9544c700f1184d1011d931e5163</originalsourceid><addsrcrecordid>eNpNkU9v00AQxS0EElXbT9DLSpwddrx_fQxuKJFSQApwXW3X4-DgeMPuphEnvjrruqqYy4xG7_1Go1cUN0AXALR-v2ya1Xa7qGgFCwYgpRKviosKZF0yweTr_-a3xXWMe5pL55VQF8XfJbnH9NO3xHek8YfjgAccUz_uyH0f49S_-jMGcmuTJf1INv5c_vBDsjsk22RT78dIPtiImTCS9eEY_GOebxGPmTc--uE0aexAtjh05Wp0vp2onzGdffh1Vbzp7BDx-rlfFt8_rr41n8rNl7t1s9yUjlOdSsGc1hoUtZ0AZXmtmXLAOrQPqgaouJQUu1pw7hSlHYDmLVCAtmaAAiS7LNYzt_V2b46hP9jwx3jbm6eFDztjQ-rdgMZyJxVKoXiFnEr5gJw5BrrNGOSqzax3Myv_-vuEMZm9P4X8YjSVVJwqwSuWVWxWueBjDNi9XAVqpuDMHJyZgjPPwWXXzezqEfHFUQtRac3ZP5Pbkoc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674075423</pqid></control><display><type>article</type><title>A Method of Complementing Missing Power Data in Low-Voltage Stations Based on Improved Deep Convolutional Self-Encoding Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhao, Hongshan ; Cui, Yangyang ; Song, Wei ; Qu, Yuehan ; Sun, Mengxue</creator><creatorcontrib>Zhao, Hongshan ; Cui, Yangyang ; Song, Wei ; Qu, Yuehan ; Sun, Mengxue</creatorcontrib><description>The irregularities in the collection and transmission of user power data in the low-voltage power distribution station area have led to errors in the subsequent application analysis of the station area. In order to ensure the integrity of power data in low-voltage stations, a multi-user power missing data complement method based on improved deep convolutional self-encoding is proposed. First, according to the characteristics of the lack of multi-user power data in the low-voltage station area, the power data is formed into a spatio-temporal tensor data format that can be used for one-dimensional convolution operations. Then use the encoding and decoding capabilities of the improved deep convolutional self-encoding network to realize the reconstruction of missing data, and optimize the network structure by introducing residual learning and batch normalization (BN). Finally, based on the proposed method, two cases of random and continuous loss of user power data in a certain area are complemented. The results show that the method can accurately complete 40% of randomly missing data and 2 consecutive days of missing data. The proposed method has improved completion accuracy compared with traditional methods to varying degrees.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3116675</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Convolution ; Data models ; deep convolutional autoencoder ; Electric potential ; Electric power distribution ; Feature extraction ; Filling ; Intelligent distribution network ; Low voltage ; low-voltage power distribution station area ; Missing data ; missing data completion ; residual learning ; Tensors ; Training ; Voltage</subject><ispartof>IEEE access, 2022, Vol.10, p.57565-57573</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-53c888170af517a49837c13feab791124660ef9544c700f1184d1011d931e5163</citedby><cites>FETCH-LOGICAL-c408t-53c888170af517a49837c13feab791124660ef9544c700f1184d1011d931e5163</cites><orcidid>0000-0002-5449-7812 ; 0000-0002-5439-3546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9552884$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhao, Hongshan</creatorcontrib><creatorcontrib>Cui, Yangyang</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Qu, Yuehan</creatorcontrib><creatorcontrib>Sun, Mengxue</creatorcontrib><title>A Method of Complementing Missing Power Data in Low-Voltage Stations Based on Improved Deep Convolutional Self-Encoding Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>The irregularities in the collection and transmission of user power data in the low-voltage power distribution station area have led to errors in the subsequent application analysis of the station area. In order to ensure the integrity of power data in low-voltage stations, a multi-user power missing data complement method based on improved deep convolutional self-encoding is proposed. First, according to the characteristics of the lack of multi-user power data in the low-voltage station area, the power data is formed into a spatio-temporal tensor data format that can be used for one-dimensional convolution operations. Then use the encoding and decoding capabilities of the improved deep convolutional self-encoding network to realize the reconstruction of missing data, and optimize the network structure by introducing residual learning and batch normalization (BN). Finally, based on the proposed method, two cases of random and continuous loss of user power data in a certain area are complemented. The results show that the method can accurately complete 40% of randomly missing data and 2 consecutive days of missing data. The proposed method has improved completion accuracy compared with traditional methods to varying degrees.</description><subject>Convolution</subject><subject>Data models</subject><subject>deep convolutional autoencoder</subject><subject>Electric potential</subject><subject>Electric power distribution</subject><subject>Feature extraction</subject><subject>Filling</subject><subject>Intelligent distribution network</subject><subject>Low voltage</subject><subject>low-voltage power distribution station area</subject><subject>Missing data</subject><subject>missing data completion</subject><subject>residual learning</subject><subject>Tensors</subject><subject>Training</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9v00AQxS0EElXbT9DLSpwddrx_fQxuKJFSQApwXW3X4-DgeMPuphEnvjrruqqYy4xG7_1Go1cUN0AXALR-v2ya1Xa7qGgFCwYgpRKviosKZF0yweTr_-a3xXWMe5pL55VQF8XfJbnH9NO3xHek8YfjgAccUz_uyH0f49S_-jMGcmuTJf1INv5c_vBDsjsk22RT78dIPtiImTCS9eEY_GOebxGPmTc--uE0aexAtjh05Wp0vp2onzGdffh1Vbzp7BDx-rlfFt8_rr41n8rNl7t1s9yUjlOdSsGc1hoUtZ0AZXmtmXLAOrQPqgaouJQUu1pw7hSlHYDmLVCAtmaAAiS7LNYzt_V2b46hP9jwx3jbm6eFDztjQ-rdgMZyJxVKoXiFnEr5gJw5BrrNGOSqzax3Myv_-vuEMZm9P4X8YjSVVJwqwSuWVWxWueBjDNi9XAVqpuDMHJyZgjPPwWXXzezqEfHFUQtRac3ZP5Pbkoc</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhao, Hongshan</creator><creator>Cui, Yangyang</creator><creator>Song, Wei</creator><creator>Qu, Yuehan</creator><creator>Sun, Mengxue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5449-7812</orcidid><orcidid>https://orcid.org/0000-0002-5439-3546</orcidid></search><sort><creationdate>2022</creationdate><title>A Method of Complementing Missing Power Data in Low-Voltage Stations Based on Improved Deep Convolutional Self-Encoding Network</title><author>Zhao, Hongshan ; Cui, Yangyang ; Song, Wei ; Qu, Yuehan ; Sun, Mengxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-53c888170af517a49837c13feab791124660ef9544c700f1184d1011d931e5163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolution</topic><topic>Data models</topic><topic>deep convolutional autoencoder</topic><topic>Electric potential</topic><topic>Electric power distribution</topic><topic>Feature extraction</topic><topic>Filling</topic><topic>Intelligent distribution network</topic><topic>Low voltage</topic><topic>low-voltage power distribution station area</topic><topic>Missing data</topic><topic>missing data completion</topic><topic>residual learning</topic><topic>Tensors</topic><topic>Training</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hongshan</creatorcontrib><creatorcontrib>Cui, Yangyang</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Qu, Yuehan</creatorcontrib><creatorcontrib>Sun, Mengxue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hongshan</au><au>Cui, Yangyang</au><au>Song, Wei</au><au>Qu, Yuehan</au><au>Sun, Mengxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method of Complementing Missing Power Data in Low-Voltage Stations Based on Improved Deep Convolutional Self-Encoding Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>57565</spage><epage>57573</epage><pages>57565-57573</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The irregularities in the collection and transmission of user power data in the low-voltage power distribution station area have led to errors in the subsequent application analysis of the station area. In order to ensure the integrity of power data in low-voltage stations, a multi-user power missing data complement method based on improved deep convolutional self-encoding is proposed. First, according to the characteristics of the lack of multi-user power data in the low-voltage station area, the power data is formed into a spatio-temporal tensor data format that can be used for one-dimensional convolution operations. Then use the encoding and decoding capabilities of the improved deep convolutional self-encoding network to realize the reconstruction of missing data, and optimize the network structure by introducing residual learning and batch normalization (BN). Finally, based on the proposed method, two cases of random and continuous loss of user power data in a certain area are complemented. The results show that the method can accurately complete 40% of randomly missing data and 2 consecutive days of missing data. The proposed method has improved completion accuracy compared with traditional methods to varying degrees.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3116675</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5449-7812</orcidid><orcidid>https://orcid.org/0000-0002-5439-3546</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.57565-57573 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9552884 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Convolution Data models deep convolutional autoencoder Electric potential Electric power distribution Feature extraction Filling Intelligent distribution network Low voltage low-voltage power distribution station area Missing data missing data completion residual learning Tensors Training Voltage |
title | A Method of Complementing Missing Power Data in Low-Voltage Stations Based on Improved Deep Convolutional Self-Encoding Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20of%20Complementing%20Missing%20Power%20Data%20in%20Low-Voltage%20Stations%20Based%20on%20Improved%20Deep%20Convolutional%20Self-Encoding%20Network&rft.jtitle=IEEE%20access&rft.au=Zhao,%20Hongshan&rft.date=2022&rft.volume=10&rft.spage=57565&rft.epage=57573&rft.pages=57565-57573&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3116675&rft_dat=%3Cproquest_ieee_%3E2674075423%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674075423&rft_id=info:pmid/&rft_ieee_id=9552884&rft_doaj_id=oai_doaj_org_article_a4c67e65742e4066be43c318d163e47d&rfr_iscdi=true |