Reinforcement-Learning-Based Dynamic Spectrum Access for Software-Defined Cognitive Industrial Internet of Things
The cognitive industrial Internet of Things (CIIoT) can improve transmission performance by utilizing the spectrum licensed to a primary user (PU), providing that the normal communication of the PU is not disturbed. However, the traditional spectrum access schemes for the CIIoT are difficult to adap...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2022-06, Vol.18 (6), p.4244-4253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4253 |
---|---|
container_issue | 6 |
container_start_page | 4244 |
container_title | IEEE transactions on industrial informatics |
container_volume | 18 |
creator | Liu, Xin Sun, Can Yu, Wei Zhou, Mu |
description | The cognitive industrial Internet of Things (CIIoT) can improve transmission performance by utilizing the spectrum licensed to a primary user (PU), providing that the normal communication of the PU is not disturbed. However, the traditional spectrum access schemes for the CIIoT are difficult to adapt to the various communication environments. In this article, Q-learning-based dynamic spectrum access is proposed for the CIIoT to intelligently utilize the spectrum resources in three access scenarios: orthogonal multiple access (OMA), underlay spectrum access, and nonorthogonal multiple access (NOMA). In the OMA scheme, the CIIoT learns to access the idle channels to avoid distributing the PUs, but its communication continuity cannot be guaranteed when most of the channels are occupied by the PUs. In the underlay scheme, the CIIoT learns to utilize the busy channels to ensure the communication continuity by limiting its transmit power within the tolerance of the PU. However, the interference to the PU cannot be eliminated, which will decrease the PU's throughput. In the NOMA scheme, however, the CIIoT can utilize the busy channels by canceling the interference to the PU with successive interference cancellation, which will guarantee the transmission performance of both the CIIoT and the PU. A Q-learning-based spectrum access algorithm is proposed to improve the transmission performance of the CIIoT in the three schemes. The simulation results have shown the advantages of the Q-learning-based NOMA scheme in terms of guaranteeing the throughput of the CIIoT nodes and decreasing the interference to the PUs. |
doi_str_mv | 10.1109/TII.2021.3113949 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9543497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9543497</ieee_id><sourcerecordid>2631959469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-4d786c936523b60ac6cad3f54f527be69bdcb511e168321670c3cf9f7d8d9d533</originalsourceid><addsrcrecordid>eNo9kN9LwzAUhYsoOKfvgi8FnzuT3iZdHufmj8JAcPO5pOnNzFjTLcmU_fdmbPh0z8N3zoUvSe4pGVFKxNOyqkY5yekIKAVRiItkQEVBM0IYuYyZMZpBTuA6ufF-TQiUBMQg2X2isbp3Cju0IZujdNbYVfYsPbbp7GBlZ1S62KIKbt-lE6XQ-zQW0kWvw690mM1QGxvhab-yJpgfTCvb7n1wRm5iDOgshrTX6fI7Lvvb5ErLjce78x0mX68vy-l7Nv94q6aTeaaAlSEr2nLMlQDOcmg4kYor2YJmhWZ52SAXTasaRilSPoac8pIoUFrosh23omUAw-TxtLt1_W6PPtTrfu9sfFnnHKhgouAiUuREKdd771DXW2c66Q41JfVRbB3F1kex9VlsrDycKgYR_3HBCihECX9INXVJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631959469</pqid></control><display><type>article</type><title>Reinforcement-Learning-Based Dynamic Spectrum Access for Software-Defined Cognitive Industrial Internet of Things</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xin ; Sun, Can ; Yu, Wei ; Zhou, Mu</creator><creatorcontrib>Liu, Xin ; Sun, Can ; Yu, Wei ; Zhou, Mu</creatorcontrib><description><![CDATA[The cognitive industrial Internet of Things (CIIoT) can improve transmission performance by utilizing the spectrum licensed to a primary user (PU), providing that the normal communication of the PU is not disturbed. However, the traditional spectrum access schemes for the CIIoT are difficult to adapt to the various communication environments. In this article, <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning-based dynamic spectrum access is proposed for the CIIoT to intelligently utilize the spectrum resources in three access scenarios: orthogonal multiple access (OMA), underlay spectrum access, and nonorthogonal multiple access (NOMA). In the OMA scheme, the CIIoT learns to access the idle channels to avoid distributing the PUs, but its communication continuity cannot be guaranteed when most of the channels are occupied by the PUs. In the underlay scheme, the CIIoT learns to utilize the busy channels to ensure the communication continuity by limiting its transmit power within the tolerance of the PU. However, the interference to the PU cannot be eliminated, which will decrease the PU's throughput. In the NOMA scheme, however, the CIIoT can utilize the busy channels by canceling the interference to the PU with successive interference cancellation, which will guarantee the transmission performance of both the CIIoT and the PU. A <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning-based spectrum access algorithm is proposed to improve the transmission performance of the CIIoT in the three schemes. The simulation results have shown the advantages of the <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning-based NOMA scheme in terms of guaranteeing the throughput of the CIIoT nodes and decreasing the interference to the PUs.]]></description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3113949</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> Q</tex-math> </inline-formula>-learning ; Algorithms ; Channels ; Cognitive industrial Internet of Things (CIIoT) ; Communication ; Continuity (mathematics) ; Dynamic spectrum access ; Industrial applications ; Industrial Internet of Things ; Interference ; Internet of Things ; Machine learning ; NOMA ; Nonorthogonal multiple access ; Reinforcement learning ; reinforcement learning (RL) ; reward ; Sensors ; Throughput</subject><ispartof>IEEE transactions on industrial informatics, 2022-06, Vol.18 (6), p.4244-4253</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-4d786c936523b60ac6cad3f54f527be69bdcb511e168321670c3cf9f7d8d9d533</citedby><cites>FETCH-LOGICAL-c357t-4d786c936523b60ac6cad3f54f527be69bdcb511e168321670c3cf9f7d8d9d533</cites><orcidid>0000-0002-8348-4922 ; 0000-0003-3533-2227 ; 0000-0002-6035-6055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9543497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9543497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Sun, Can</creatorcontrib><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Zhou, Mu</creatorcontrib><title>Reinforcement-Learning-Based Dynamic Spectrum Access for Software-Defined Cognitive Industrial Internet of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description><![CDATA[The cognitive industrial Internet of Things (CIIoT) can improve transmission performance by utilizing the spectrum licensed to a primary user (PU), providing that the normal communication of the PU is not disturbed. However, the traditional spectrum access schemes for the CIIoT are difficult to adapt to the various communication environments. In this article, <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning-based dynamic spectrum access is proposed for the CIIoT to intelligently utilize the spectrum resources in three access scenarios: orthogonal multiple access (OMA), underlay spectrum access, and nonorthogonal multiple access (NOMA). In the OMA scheme, the CIIoT learns to access the idle channels to avoid distributing the PUs, but its communication continuity cannot be guaranteed when most of the channels are occupied by the PUs. In the underlay scheme, the CIIoT learns to utilize the busy channels to ensure the communication continuity by limiting its transmit power within the tolerance of the PU. However, the interference to the PU cannot be eliminated, which will decrease the PU's throughput. In the NOMA scheme, however, the CIIoT can utilize the busy channels by canceling the interference to the PU with successive interference cancellation, which will guarantee the transmission performance of both the CIIoT and the PU. A <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning-based spectrum access algorithm is proposed to improve the transmission performance of the CIIoT in the three schemes. The simulation results have shown the advantages of the <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning-based NOMA scheme in terms of guaranteeing the throughput of the CIIoT nodes and decreasing the interference to the PUs.]]></description><subject><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> Q</tex-math> </inline-formula>-learning</subject><subject>Algorithms</subject><subject>Channels</subject><subject>Cognitive industrial Internet of Things (CIIoT)</subject><subject>Communication</subject><subject>Continuity (mathematics)</subject><subject>Dynamic spectrum access</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Interference</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>NOMA</subject><subject>Nonorthogonal multiple access</subject><subject>Reinforcement learning</subject><subject>reinforcement learning (RL)</subject><subject>reward</subject><subject>Sensors</subject><subject>Throughput</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAUhYsoOKfvgi8FnzuT3iZdHufmj8JAcPO5pOnNzFjTLcmU_fdmbPh0z8N3zoUvSe4pGVFKxNOyqkY5yekIKAVRiItkQEVBM0IYuYyZMZpBTuA6ufF-TQiUBMQg2X2isbp3Cju0IZujdNbYVfYsPbbp7GBlZ1S62KIKbt-lE6XQ-zQW0kWvw690mM1QGxvhab-yJpgfTCvb7n1wRm5iDOgshrTX6fI7Lvvb5ErLjce78x0mX68vy-l7Nv94q6aTeaaAlSEr2nLMlQDOcmg4kYor2YJmhWZ52SAXTasaRilSPoac8pIoUFrosh23omUAw-TxtLt1_W6PPtTrfu9sfFnnHKhgouAiUuREKdd771DXW2c66Q41JfVRbB3F1kex9VlsrDycKgYR_3HBCihECX9INXVJ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Liu, Xin</creator><creator>Sun, Can</creator><creator>Yu, Wei</creator><creator>Zhou, Mu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8348-4922</orcidid><orcidid>https://orcid.org/0000-0003-3533-2227</orcidid><orcidid>https://orcid.org/0000-0002-6035-6055</orcidid></search><sort><creationdate>20220601</creationdate><title>Reinforcement-Learning-Based Dynamic Spectrum Access for Software-Defined Cognitive Industrial Internet of Things</title><author>Liu, Xin ; Sun, Can ; Yu, Wei ; Zhou, Mu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-4d786c936523b60ac6cad3f54f527be69bdcb511e168321670c3cf9f7d8d9d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> Q</tex-math> </inline-formula>-learning</topic><topic>Algorithms</topic><topic>Channels</topic><topic>Cognitive industrial Internet of Things (CIIoT)</topic><topic>Communication</topic><topic>Continuity (mathematics)</topic><topic>Dynamic spectrum access</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Interference</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>NOMA</topic><topic>Nonorthogonal multiple access</topic><topic>Reinforcement learning</topic><topic>reinforcement learning (RL)</topic><topic>reward</topic><topic>Sensors</topic><topic>Throughput</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Sun, Can</creatorcontrib><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Zhou, Mu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xin</au><au>Sun, Can</au><au>Yu, Wei</au><au>Zhou, Mu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement-Learning-Based Dynamic Spectrum Access for Software-Defined Cognitive Industrial Internet of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>6</issue><spage>4244</spage><epage>4253</epage><pages>4244-4253</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract><![CDATA[The cognitive industrial Internet of Things (CIIoT) can improve transmission performance by utilizing the spectrum licensed to a primary user (PU), providing that the normal communication of the PU is not disturbed. However, the traditional spectrum access schemes for the CIIoT are difficult to adapt to the various communication environments. In this article, <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning-based dynamic spectrum access is proposed for the CIIoT to intelligently utilize the spectrum resources in three access scenarios: orthogonal multiple access (OMA), underlay spectrum access, and nonorthogonal multiple access (NOMA). In the OMA scheme, the CIIoT learns to access the idle channels to avoid distributing the PUs, but its communication continuity cannot be guaranteed when most of the channels are occupied by the PUs. In the underlay scheme, the CIIoT learns to utilize the busy channels to ensure the communication continuity by limiting its transmit power within the tolerance of the PU. However, the interference to the PU cannot be eliminated, which will decrease the PU's throughput. In the NOMA scheme, however, the CIIoT can utilize the busy channels by canceling the interference to the PU with successive interference cancellation, which will guarantee the transmission performance of both the CIIoT and the PU. A <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning-based spectrum access algorithm is proposed to improve the transmission performance of the CIIoT in the three schemes. The simulation results have shown the advantages of the <inline-formula><tex-math notation="LaTeX">Q</tex-math></inline-formula>-learning-based NOMA scheme in terms of guaranteeing the throughput of the CIIoT nodes and decreasing the interference to the PUs.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3113949</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8348-4922</orcidid><orcidid>https://orcid.org/0000-0003-3533-2227</orcidid><orcidid>https://orcid.org/0000-0002-6035-6055</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2022-06, Vol.18 (6), p.4244-4253 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_9543497 |
source | IEEE Electronic Library (IEL) |
subjects | <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> Q</tex-math> </inline-formula>-learning Algorithms Channels Cognitive industrial Internet of Things (CIIoT) Communication Continuity (mathematics) Dynamic spectrum access Industrial applications Industrial Internet of Things Interference Internet of Things Machine learning NOMA Nonorthogonal multiple access Reinforcement learning reinforcement learning (RL) reward Sensors Throughput |
title | Reinforcement-Learning-Based Dynamic Spectrum Access for Software-Defined Cognitive Industrial Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement-Learning-Based%20Dynamic%20Spectrum%20Access%20for%20Software-Defined%20Cognitive%20Industrial%20Internet%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Xin&rft.date=2022-06-01&rft.volume=18&rft.issue=6&rft.spage=4244&rft.epage=4253&rft.pages=4244-4253&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3113949&rft_dat=%3Cproquest_RIE%3E2631959469%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631959469&rft_id=info:pmid/&rft_ieee_id=9543497&rfr_iscdi=true |