Feature Engineering and Machine Learning Model Comparison for Malicious Activity Detection in the DNS-Over-HTTPS Protocol
The Domain Name System (DNS) is among the most ubiquitous and important protocols for network communication; however, security concerns regarding DNS have been on the rise and demand for encrypted traffic has followed suit. Using a publicly available dataset, this work compares 10 different machine...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.129902-129916 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129916 |
---|---|
container_issue | |
container_start_page | 129902 |
container_title | IEEE access |
container_volume | 9 |
creator | Behnke, Matthew Briner, Nathan Cullen, Drake Schwerdtfeger, Katelynn Warren, Jackson Basnet, Ram Doleck, Tenzin |
description | The Domain Name System (DNS) is among the most ubiquitous and important protocols for network communication; however, security concerns regarding DNS have been on the rise and demand for encrypted traffic has followed suit. Using a publicly available dataset, this work compares 10 different machine learning classifiers using stratified 10-fold cross-validation. The classifiers are used to determine the most effective and efficient way of detecting malicious DNS over Hypertext Transfer Protocol Secure (HTTPS) traffic, dubbed DoH traffic. Model performance is evaluated on Non-DoH vs. DoH traffic, then tested on benign vs. malicious DoH traffic. Additionally, this paper seeks to build upon existing research by removing noise and introducing feature selection methods and feature explainability to produce a better model for real-world deployment. After eliminating five overfitting features, our findings indicate that light gradient boosting machine (LGBM) yielded the highest accuracy to training time ratio while approaching 0% error using 20 top features. |
doi_str_mv | 10.1109/ACCESS.2021.3113294 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9540699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9540699</ieee_id><doaj_id>oai_doaj_org_article_e5a960db73b2434d91f1e08d65eaa227</doaj_id><sourcerecordid>2577554663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-27a8e8b903ea61bf1d1ab34f2ed890913d0a8c71e65de8710e0b6bb5295279f63</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKWBhjS_IC-CPvuqD0uyHg_n0gQuH3DXZ7G21hcdjnWVdYH799XVIXRfdhhmZhemKG4YXTBGzc9l06w2mwWnnC0EY4Kb6ktxyZkypZBCff0Pfyuup2lP89SZkvqyON0hpGNEshp3fkSMftwRGB15hO41E2SNEMcz-RgcDqQJbweIfgoj6UPMqsF3PhwnsuySf_fpRG4xYcZZ4EeSXpHcPm3K53eM5f12-7IhLzGk0IXhe3HRwzDh9ce-Kn7frbbNfbl-_vXQLNdlV-kqlVxDjXVrqEBQrO2ZY9CKqufoakMNE45C3WmGSjqsNaNIW9W2khvJtemVuCoe5lwXYG8P0b9BPNkA3v4jQtxZiMl3A1qUYBR1rRYtr0TlDOsZ0topiQCc65z1Y846xPDniFOy-3CMY37fcqm1lJVSIqvErOpimKaI_edVRu25MjtXZs-V2Y_KsutmdnlE_HQYWVFljPgLC36R7w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577554663</pqid></control><display><type>article</type><title>Feature Engineering and Machine Learning Model Comparison for Malicious Activity Detection in the DNS-Over-HTTPS Protocol</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Behnke, Matthew ; Briner, Nathan ; Cullen, Drake ; Schwerdtfeger, Katelynn ; Warren, Jackson ; Basnet, Ram ; Doleck, Tenzin</creator><creatorcontrib>Behnke, Matthew ; Briner, Nathan ; Cullen, Drake ; Schwerdtfeger, Katelynn ; Warren, Jackson ; Basnet, Ram ; Doleck, Tenzin</creatorcontrib><description>The Domain Name System (DNS) is among the most ubiquitous and important protocols for network communication; however, security concerns regarding DNS have been on the rise and demand for encrypted traffic has followed suit. Using a publicly available dataset, this work compares 10 different machine learning classifiers using stratified 10-fold cross-validation. The classifiers are used to determine the most effective and efficient way of detecting malicious DNS over Hypertext Transfer Protocol Secure (HTTPS) traffic, dubbed DoH traffic. Model performance is evaluated on Non-DoH vs. DoH traffic, then tested on benign vs. malicious DoH traffic. Additionally, this paper seeks to build upon existing research by removing noise and introducing feature selection methods and feature explainability to produce a better model for real-world deployment. After eliminating five overfitting features, our findings indicate that light gradient boosting machine (LGBM) yielded the highest accuracy to training time ratio while approaching 0% error using 20 top features.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3113294</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Browsers ; Chi-square test ; Chi-squared ; Classifiers ; decision tree ; DNS ; DoH ; Domain names ; Feature extraction ; Hypertext ; IP networks ; LGBM ; Machine learning ; pearson correlation ; Privacy ; Protocols ; random forest ; Security ; sequential forward selection ; Servers ; Traffic models ; XGBM</subject><ispartof>IEEE access, 2021, Vol.9, p.129902-129916</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-27a8e8b903ea61bf1d1ab34f2ed890913d0a8c71e65de8710e0b6bb5295279f63</citedby><cites>FETCH-LOGICAL-c474t-27a8e8b903ea61bf1d1ab34f2ed890913d0a8c71e65de8710e0b6bb5295279f63</cites><orcidid>0000-0001-9086-5718 ; 0000-0001-6864-6893 ; 0000-0002-0000-8307 ; 0000-0001-6529-5493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9540699$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Behnke, Matthew</creatorcontrib><creatorcontrib>Briner, Nathan</creatorcontrib><creatorcontrib>Cullen, Drake</creatorcontrib><creatorcontrib>Schwerdtfeger, Katelynn</creatorcontrib><creatorcontrib>Warren, Jackson</creatorcontrib><creatorcontrib>Basnet, Ram</creatorcontrib><creatorcontrib>Doleck, Tenzin</creatorcontrib><title>Feature Engineering and Machine Learning Model Comparison for Malicious Activity Detection in the DNS-Over-HTTPS Protocol</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Domain Name System (DNS) is among the most ubiquitous and important protocols for network communication; however, security concerns regarding DNS have been on the rise and demand for encrypted traffic has followed suit. Using a publicly available dataset, this work compares 10 different machine learning classifiers using stratified 10-fold cross-validation. The classifiers are used to determine the most effective and efficient way of detecting malicious DNS over Hypertext Transfer Protocol Secure (HTTPS) traffic, dubbed DoH traffic. Model performance is evaluated on Non-DoH vs. DoH traffic, then tested on benign vs. malicious DoH traffic. Additionally, this paper seeks to build upon existing research by removing noise and introducing feature selection methods and feature explainability to produce a better model for real-world deployment. After eliminating five overfitting features, our findings indicate that light gradient boosting machine (LGBM) yielded the highest accuracy to training time ratio while approaching 0% error using 20 top features.</description><subject>Browsers</subject><subject>Chi-square test</subject><subject>Chi-squared</subject><subject>Classifiers</subject><subject>decision tree</subject><subject>DNS</subject><subject>DoH</subject><subject>Domain names</subject><subject>Feature extraction</subject><subject>Hypertext</subject><subject>IP networks</subject><subject>LGBM</subject><subject>Machine learning</subject><subject>pearson correlation</subject><subject>Privacy</subject><subject>Protocols</subject><subject>random forest</subject><subject>Security</subject><subject>sequential forward selection</subject><subject>Servers</subject><subject>Traffic models</subject><subject>XGBM</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKWBhjS_IC-CPvuqD0uyHg_n0gQuH3DXZ7G21hcdjnWVdYH799XVIXRfdhhmZhemKG4YXTBGzc9l06w2mwWnnC0EY4Kb6ktxyZkypZBCff0Pfyuup2lP89SZkvqyON0hpGNEshp3fkSMftwRGB15hO41E2SNEMcz-RgcDqQJbweIfgoj6UPMqsF3PhwnsuySf_fpRG4xYcZZ4EeSXpHcPm3K53eM5f12-7IhLzGk0IXhe3HRwzDh9ce-Kn7frbbNfbl-_vXQLNdlV-kqlVxDjXVrqEBQrO2ZY9CKqufoakMNE45C3WmGSjqsNaNIW9W2khvJtemVuCoe5lwXYG8P0b9BPNkA3v4jQtxZiMl3A1qUYBR1rRYtr0TlDOsZ0topiQCc65z1Y846xPDniFOy-3CMY37fcqm1lJVSIqvErOpimKaI_edVRu25MjtXZs-V2Y_KsutmdnlE_HQYWVFljPgLC36R7w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Behnke, Matthew</creator><creator>Briner, Nathan</creator><creator>Cullen, Drake</creator><creator>Schwerdtfeger, Katelynn</creator><creator>Warren, Jackson</creator><creator>Basnet, Ram</creator><creator>Doleck, Tenzin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9086-5718</orcidid><orcidid>https://orcid.org/0000-0001-6864-6893</orcidid><orcidid>https://orcid.org/0000-0002-0000-8307</orcidid><orcidid>https://orcid.org/0000-0001-6529-5493</orcidid></search><sort><creationdate>2021</creationdate><title>Feature Engineering and Machine Learning Model Comparison for Malicious Activity Detection in the DNS-Over-HTTPS Protocol</title><author>Behnke, Matthew ; Briner, Nathan ; Cullen, Drake ; Schwerdtfeger, Katelynn ; Warren, Jackson ; Basnet, Ram ; Doleck, Tenzin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-27a8e8b903ea61bf1d1ab34f2ed890913d0a8c71e65de8710e0b6bb5295279f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Browsers</topic><topic>Chi-square test</topic><topic>Chi-squared</topic><topic>Classifiers</topic><topic>decision tree</topic><topic>DNS</topic><topic>DoH</topic><topic>Domain names</topic><topic>Feature extraction</topic><topic>Hypertext</topic><topic>IP networks</topic><topic>LGBM</topic><topic>Machine learning</topic><topic>pearson correlation</topic><topic>Privacy</topic><topic>Protocols</topic><topic>random forest</topic><topic>Security</topic><topic>sequential forward selection</topic><topic>Servers</topic><topic>Traffic models</topic><topic>XGBM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behnke, Matthew</creatorcontrib><creatorcontrib>Briner, Nathan</creatorcontrib><creatorcontrib>Cullen, Drake</creatorcontrib><creatorcontrib>Schwerdtfeger, Katelynn</creatorcontrib><creatorcontrib>Warren, Jackson</creatorcontrib><creatorcontrib>Basnet, Ram</creatorcontrib><creatorcontrib>Doleck, Tenzin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behnke, Matthew</au><au>Briner, Nathan</au><au>Cullen, Drake</au><au>Schwerdtfeger, Katelynn</au><au>Warren, Jackson</au><au>Basnet, Ram</au><au>Doleck, Tenzin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Engineering and Machine Learning Model Comparison for Malicious Activity Detection in the DNS-Over-HTTPS Protocol</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>129902</spage><epage>129916</epage><pages>129902-129916</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Domain Name System (DNS) is among the most ubiquitous and important protocols for network communication; however, security concerns regarding DNS have been on the rise and demand for encrypted traffic has followed suit. Using a publicly available dataset, this work compares 10 different machine learning classifiers using stratified 10-fold cross-validation. The classifiers are used to determine the most effective and efficient way of detecting malicious DNS over Hypertext Transfer Protocol Secure (HTTPS) traffic, dubbed DoH traffic. Model performance is evaluated on Non-DoH vs. DoH traffic, then tested on benign vs. malicious DoH traffic. Additionally, this paper seeks to build upon existing research by removing noise and introducing feature selection methods and feature explainability to produce a better model for real-world deployment. After eliminating five overfitting features, our findings indicate that light gradient boosting machine (LGBM) yielded the highest accuracy to training time ratio while approaching 0% error using 20 top features.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3113294</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9086-5718</orcidid><orcidid>https://orcid.org/0000-0001-6864-6893</orcidid><orcidid>https://orcid.org/0000-0002-0000-8307</orcidid><orcidid>https://orcid.org/0000-0001-6529-5493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.129902-129916 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9540699 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Browsers Chi-square test Chi-squared Classifiers decision tree DNS DoH Domain names Feature extraction Hypertext IP networks LGBM Machine learning pearson correlation Privacy Protocols random forest Security sequential forward selection Servers Traffic models XGBM |
title | Feature Engineering and Machine Learning Model Comparison for Malicious Activity Detection in the DNS-Over-HTTPS Protocol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Engineering%20and%20Machine%20Learning%20Model%20Comparison%20for%20Malicious%20Activity%20Detection%20in%20the%20DNS-Over-HTTPS%20Protocol&rft.jtitle=IEEE%20access&rft.au=Behnke,%20Matthew&rft.date=2021&rft.volume=9&rft.spage=129902&rft.epage=129916&rft.pages=129902-129916&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3113294&rft_dat=%3Cproquest_ieee_%3E2577554663%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577554663&rft_id=info:pmid/&rft_ieee_id=9540699&rft_doaj_id=oai_doaj_org_article_e5a960db73b2434d91f1e08d65eaa227&rfr_iscdi=true |