CyCoSeg: A Cyclic Collaborative Framework for Automated Medical Image Segmentation

Deep neural networks have been tremendously successful at segmenting objects in images. However, it has been shown they still have limitations on challenging problems such as the segmentation of medical images. The main reason behind this lower success resides in the reduced size of the object in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2022-11, Vol.44 (11), p.8167-8182
Hauptverfasser: Medley, Daniela O., Santiago, Carlos, Nascimento, Jacinto C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8182
container_issue 11
container_start_page 8167
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 44
creator Medley, Daniela O.
Santiago, Carlos
Nascimento, Jacinto C.
description Deep neural networks have been tremendously successful at segmenting objects in images. However, it has been shown they still have limitations on challenging problems such as the segmentation of medical images. The main reason behind this lower success resides in the reduced size of the object in the image. In this paper we overcome this limitation through a cyclic collaborative framework, CyCoSeg . The proposed framework is based on a deep active shape model (D-ASM), which provides prior information about the shape of the object, and a semantic segmentation network (SSN). These two models collaborate to reach the desired segmentation by influencing each other: SSN helps D-ASM identify relevant keypoints in the image through an Expectation Maximization formulation, while D-ASM provides a segmentation proposal that guides the SSN. This cycle is repeated until both models converge. Extensive experimental evaluation shows CyCoSeg boosts the performance of the baseline models, including several popular SSNs, while avoiding major architectural modifications. The effectiveness of our method is demonstrated on the left ventricle segmentation on two benchmark datasets, where our approach achieves one of the most competitive results in segmentation accuracy. Furthermore, its generalization is demonstrated for lungs and kidneys segmentation in CT scans.
doi_str_mv 10.1109/TPAMI.2021.3113077
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9540298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9540298</ieee_id><sourcerecordid>2574405071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c688c7096795bcc7558af3ec38dc0a7ac3be0b4f9f175f256e881ad6ed4698aa3</originalsourceid><addsrcrecordid>eNpdkDtPwzAURi0EouXxB2CxxMKS4kcc22xRRKFSKxCU2XKdmyoliYuTgvrvSWnFwHSXcz5dHYSuKBlRSvTd_CWdTUaMMDrilHIi5REaUs11xAXXx2hIaMIipZgaoLO2XRFCY0H4KRrwWDAtEjZEr9k282-wvMcpzrauKh3OfFXZhQ-2K78Aj4Ot4duHD1z4gNNN52vbQY5nkJfOVnhS2yXgfqGGpusV31ygk8JWLVwe7jl6Hz_Ms6do-vw4ydJp5DhTXeQSpZwkOpFaLJyTQihbcHBc5Y5YaR1fAFnEhS6oFAUTCShFbZ5AHidaWcvP0e1-dx385wbaztRl66B_vgG_aQ0TMo6JIJL26M0_dOU3oem_M0wyGjOtlOgptqdc8G0boDDrUNY2bA0lZlfc_BY3u-LmULyXrvdSCQB_ghYx6Uf5D-rFeho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721429885</pqid></control><display><type>article</type><title>CyCoSeg: A Cyclic Collaborative Framework for Automated Medical Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Medley, Daniela O. ; Santiago, Carlos ; Nascimento, Jacinto C.</creator><creatorcontrib>Medley, Daniela O. ; Santiago, Carlos ; Nascimento, Jacinto C.</creatorcontrib><description>Deep neural networks have been tremendously successful at segmenting objects in images. However, it has been shown they still have limitations on challenging problems such as the segmentation of medical images. The main reason behind this lower success resides in the reduced size of the object in the image. In this paper we overcome this limitation through a cyclic collaborative framework, CyCoSeg . The proposed framework is based on a deep active shape model (D-ASM), which provides prior information about the shape of the object, and a semantic segmentation network (SSN). These two models collaborate to reach the desired segmentation by influencing each other: SSN helps D-ASM identify relevant keypoints in the image through an Expectation Maximization formulation, while D-ASM provides a segmentation proposal that guides the SSN. This cycle is repeated until both models converge. Extensive experimental evaluation shows CyCoSeg boosts the performance of the baseline models, including several popular SSNs, while avoiding major architectural modifications. The effectiveness of our method is demonstrated on the left ventricle segmentation on two benchmark datasets, where our approach achieves one of the most competitive results in segmentation accuracy. Furthermore, its generalization is demonstrated for lungs and kidneys segmentation in CT scans.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3113077</identifier><identifier>PMID: 34529562</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Collaboration ; Computed tomography ; Deformable models ; image processing and computer vision ; Image segmentation ; machine learning ; Medical imaging ; Segmentation ; semantic networks ; Semantics ; Shape ; Three-dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-11, Vol.44 (11), p.8167-8182</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-c688c7096795bcc7558af3ec38dc0a7ac3be0b4f9f175f256e881ad6ed4698aa3</citedby><cites>FETCH-LOGICAL-c328t-c688c7096795bcc7558af3ec38dc0a7ac3be0b4f9f175f256e881ad6ed4698aa3</cites><orcidid>0000-0002-5377-9076 ; 0000-0002-4737-0020 ; 0000-0001-7468-5127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9540298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9540298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Medley, Daniela O.</creatorcontrib><creatorcontrib>Santiago, Carlos</creatorcontrib><creatorcontrib>Nascimento, Jacinto C.</creatorcontrib><title>CyCoSeg: A Cyclic Collaborative Framework for Automated Medical Image Segmentation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Deep neural networks have been tremendously successful at segmenting objects in images. However, it has been shown they still have limitations on challenging problems such as the segmentation of medical images. The main reason behind this lower success resides in the reduced size of the object in the image. In this paper we overcome this limitation through a cyclic collaborative framework, CyCoSeg . The proposed framework is based on a deep active shape model (D-ASM), which provides prior information about the shape of the object, and a semantic segmentation network (SSN). These two models collaborate to reach the desired segmentation by influencing each other: SSN helps D-ASM identify relevant keypoints in the image through an Expectation Maximization formulation, while D-ASM provides a segmentation proposal that guides the SSN. This cycle is repeated until both models converge. Extensive experimental evaluation shows CyCoSeg boosts the performance of the baseline models, including several popular SSNs, while avoiding major architectural modifications. The effectiveness of our method is demonstrated on the left ventricle segmentation on two benchmark datasets, where our approach achieves one of the most competitive results in segmentation accuracy. Furthermore, its generalization is demonstrated for lungs and kidneys segmentation in CT scans.</description><subject>Artificial neural networks</subject><subject>Collaboration</subject><subject>Computed tomography</subject><subject>Deformable models</subject><subject>image processing and computer vision</subject><subject>Image segmentation</subject><subject>machine learning</subject><subject>Medical imaging</subject><subject>Segmentation</subject><subject>semantic networks</subject><subject>Semantics</subject><subject>Shape</subject><subject>Three-dimensional displays</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDtPwzAURi0EouXxB2CxxMKS4kcc22xRRKFSKxCU2XKdmyoliYuTgvrvSWnFwHSXcz5dHYSuKBlRSvTd_CWdTUaMMDrilHIi5REaUs11xAXXx2hIaMIipZgaoLO2XRFCY0H4KRrwWDAtEjZEr9k282-wvMcpzrauKh3OfFXZhQ-2K78Aj4Ot4duHD1z4gNNN52vbQY5nkJfOVnhS2yXgfqGGpusV31ygk8JWLVwe7jl6Hz_Ms6do-vw4ydJp5DhTXeQSpZwkOpFaLJyTQihbcHBc5Y5YaR1fAFnEhS6oFAUTCShFbZ5AHidaWcvP0e1-dx385wbaztRl66B_vgG_aQ0TMo6JIJL26M0_dOU3oem_M0wyGjOtlOgptqdc8G0boDDrUNY2bA0lZlfc_BY3u-LmULyXrvdSCQB_ghYx6Uf5D-rFeho</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Medley, Daniela O.</creator><creator>Santiago, Carlos</creator><creator>Nascimento, Jacinto C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5377-9076</orcidid><orcidid>https://orcid.org/0000-0002-4737-0020</orcidid><orcidid>https://orcid.org/0000-0001-7468-5127</orcidid></search><sort><creationdate>20221101</creationdate><title>CyCoSeg: A Cyclic Collaborative Framework for Automated Medical Image Segmentation</title><author>Medley, Daniela O. ; Santiago, Carlos ; Nascimento, Jacinto C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c688c7096795bcc7558af3ec38dc0a7ac3be0b4f9f175f256e881ad6ed4698aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Collaboration</topic><topic>Computed tomography</topic><topic>Deformable models</topic><topic>image processing and computer vision</topic><topic>Image segmentation</topic><topic>machine learning</topic><topic>Medical imaging</topic><topic>Segmentation</topic><topic>semantic networks</topic><topic>Semantics</topic><topic>Shape</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medley, Daniela O.</creatorcontrib><creatorcontrib>Santiago, Carlos</creatorcontrib><creatorcontrib>Nascimento, Jacinto C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Medley, Daniela O.</au><au>Santiago, Carlos</au><au>Nascimento, Jacinto C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CyCoSeg: A Cyclic Collaborative Framework for Automated Medical Image Segmentation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>44</volume><issue>11</issue><spage>8167</spage><epage>8182</epage><pages>8167-8182</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Deep neural networks have been tremendously successful at segmenting objects in images. However, it has been shown they still have limitations on challenging problems such as the segmentation of medical images. The main reason behind this lower success resides in the reduced size of the object in the image. In this paper we overcome this limitation through a cyclic collaborative framework, CyCoSeg . The proposed framework is based on a deep active shape model (D-ASM), which provides prior information about the shape of the object, and a semantic segmentation network (SSN). These two models collaborate to reach the desired segmentation by influencing each other: SSN helps D-ASM identify relevant keypoints in the image through an Expectation Maximization formulation, while D-ASM provides a segmentation proposal that guides the SSN. This cycle is repeated until both models converge. Extensive experimental evaluation shows CyCoSeg boosts the performance of the baseline models, including several popular SSNs, while avoiding major architectural modifications. The effectiveness of our method is demonstrated on the left ventricle segmentation on two benchmark datasets, where our approach achieves one of the most competitive results in segmentation accuracy. Furthermore, its generalization is demonstrated for lungs and kidneys segmentation in CT scans.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34529562</pmid><doi>10.1109/TPAMI.2021.3113077</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5377-9076</orcidid><orcidid>https://orcid.org/0000-0002-4737-0020</orcidid><orcidid>https://orcid.org/0000-0001-7468-5127</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2022-11, Vol.44 (11), p.8167-8182
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_9540298
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Collaboration
Computed tomography
Deformable models
image processing and computer vision
Image segmentation
machine learning
Medical imaging
Segmentation
semantic networks
Semantics
Shape
Three-dimensional displays
title CyCoSeg: A Cyclic Collaborative Framework for Automated Medical Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CyCoSeg:%20A%20Cyclic%20Collaborative%20Framework%20for%20Automated%20Medical%20Image%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Medley,%20Daniela%20O.&rft.date=2022-11-01&rft.volume=44&rft.issue=11&rft.spage=8167&rft.epage=8182&rft.pages=8167-8182&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3113077&rft_dat=%3Cproquest_RIE%3E2574405071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721429885&rft_id=info:pmid/34529562&rft_ieee_id=9540298&rfr_iscdi=true