Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations
This article presents the derivation of semianalytic solutions to a new 1-D photoelectron sheath model near the lunar surface. The plasma species include the cold solar wind protons, drifting Maxwellian solar wind electrons, and Maxwellian photoelectrons emitted from the surface. The semianalytic mo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2021-10, Vol.49 (10), p.3036-3050 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3050 |
---|---|
container_issue | 10 |
container_start_page | 3036 |
container_title | IEEE transactions on plasma science |
container_volume | 49 |
creator | Zhao, Jianxun Wei, Xinpeng Du, Xiaoping He, Xiaoming Han, Daoru |
description | This article presents the derivation of semianalytic solutions to a new 1-D photoelectron sheath model near the lunar surface. The plasma species include the cold solar wind protons, drifting Maxwellian solar wind electrons, and Maxwellian photoelectrons emitted from the surface. The semianalytic model is then numerically solved to obtain profiles of quantities of interest as functions of the vertical distance from the surface. A fully-kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is then utilized to simulate the 1-D photoelectron sheath and the results agree well with the numerical solution to the semianalytic model. A \kappa -distribution for solar wind electrons is also implemented to the FD-PIC code to compare with the Maxwellian distribution. Results show that photoelectron sheath may reach as high as close to 100 m above the illuminated flat lunar surface near the terminator region and up to about 50 m near the equator region. Our results show that under average solar wind condition, the photoelectron sheath profiles obtained with Maxwellian and \kappa -distribution (with \kappa = 4.5 ) are very close for 1-D numerical results. |
doi_str_mv | 10.1109/TPS.2021.3110946 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9540213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9540213</ieee_id><sourcerecordid>2582248212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d66d295dd5486da74498f97b02030d9781c2cd6483cce3c29a537aaae14dbc803</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKt3wUvA89Z87Ue8SbEqFixsPS-vyWs3ku7WZPfQu3-421Y8DY_5zfAYQm45m3DO9MNyUU4EE3wiD6fKzsiIa6kTLfP0nIwY0zKRBZeX5CrGL8a4SpkYkZ9F3XYtejRdaBta1ghdTaGxdOEhboFOawgb12zo4HY10nnfQKBlH9Zg8JGWuHXQgN93ztCy9X3n2iYeC2a99_vk3TV48BYQBvGYuCaZove0dNvewxG_Jhdr8BFv_nRMPmfPy-lrMv94eZs-zRMjNO8Sm2VW6NTaVBWZhVwpXax1vmKCSWZ1XnAjjM1UIY1BOWQglTkAIFd2ZQomx-T-1LsL7XePsau-2j4M38dKpIUQqhBcDBQ7USa0MQZcV7vgthD2FWfVYdxq2Lo6bF39bT1E7k4Rh4j_uE7VAEn5C1_ie_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582248212</pqid></control><display><type>article</type><title>Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Jianxun ; Wei, Xinpeng ; Du, Xiaoping ; He, Xiaoming ; Han, Daoru</creator><creatorcontrib>Zhao, Jianxun ; Wei, Xinpeng ; Du, Xiaoping ; He, Xiaoming ; Han, Daoru</creatorcontrib><description><![CDATA[This article presents the derivation of semianalytic solutions to a new 1-D photoelectron sheath model near the lunar surface. The plasma species include the cold solar wind protons, drifting Maxwellian solar wind electrons, and Maxwellian photoelectrons emitted from the surface. The semianalytic model is then numerically solved to obtain profiles of quantities of interest as functions of the vertical distance from the surface. A fully-kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is then utilized to simulate the 1-D photoelectron sheath and the results agree well with the numerical solution to the semianalytic model. A <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution for solar wind electrons is also implemented to the FD-PIC code to compare with the Maxwellian distribution. Results show that photoelectron sheath may reach as high as close to 100 m above the illuminated flat lunar surface near the terminator region and up to about 50 m near the equator region. Our results show that under average solar wind condition, the photoelectron sheath profiles obtained with Maxwellian and <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution (with <inline-formula> <tex-math notation="LaTeX">\kappa = 4.5 </tex-math></inline-formula>) are very close for 1-D numerical results.]]></description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2021.3110946</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Electric potential ; Electrons ; Equatorial regions ; Finite difference method ; Lunar surface ; Mathematical models ; Maxwellian distribution ; Moon ; Numerical models ; Particle in cell technique ; particle-in-cell (PIC) ; photoelectron sheath ; Photoelectrons ; Plasmas ; semianalytic solution ; Sheaths ; Sociology ; Solar wind ; Statistics</subject><ispartof>IEEE transactions on plasma science, 2021-10, Vol.49 (10), p.3036-3050</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d66d295dd5486da74498f97b02030d9781c2cd6483cce3c29a537aaae14dbc803</citedby><cites>FETCH-LOGICAL-c291t-d66d295dd5486da74498f97b02030d9781c2cd6483cce3c29a537aaae14dbc803</cites><orcidid>0000-0001-6186-1777 ; 0000-0003-1270-4972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9540213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9540213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Jianxun</creatorcontrib><creatorcontrib>Wei, Xinpeng</creatorcontrib><creatorcontrib>Du, Xiaoping</creatorcontrib><creatorcontrib>He, Xiaoming</creatorcontrib><creatorcontrib>Han, Daoru</creatorcontrib><title>Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description><![CDATA[This article presents the derivation of semianalytic solutions to a new 1-D photoelectron sheath model near the lunar surface. The plasma species include the cold solar wind protons, drifting Maxwellian solar wind electrons, and Maxwellian photoelectrons emitted from the surface. The semianalytic model is then numerically solved to obtain profiles of quantities of interest as functions of the vertical distance from the surface. A fully-kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is then utilized to simulate the 1-D photoelectron sheath and the results agree well with the numerical solution to the semianalytic model. A <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution for solar wind electrons is also implemented to the FD-PIC code to compare with the Maxwellian distribution. Results show that photoelectron sheath may reach as high as close to 100 m above the illuminated flat lunar surface near the terminator region and up to about 50 m near the equator region. Our results show that under average solar wind condition, the photoelectron sheath profiles obtained with Maxwellian and <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution (with <inline-formula> <tex-math notation="LaTeX">\kappa = 4.5 </tex-math></inline-formula>) are very close for 1-D numerical results.]]></description><subject>Codes</subject><subject>Electric potential</subject><subject>Electrons</subject><subject>Equatorial regions</subject><subject>Finite difference method</subject><subject>Lunar surface</subject><subject>Mathematical models</subject><subject>Maxwellian distribution</subject><subject>Moon</subject><subject>Numerical models</subject><subject>Particle in cell technique</subject><subject>particle-in-cell (PIC)</subject><subject>photoelectron sheath</subject><subject>Photoelectrons</subject><subject>Plasmas</subject><subject>semianalytic solution</subject><subject>Sheaths</subject><subject>Sociology</subject><subject>Solar wind</subject><subject>Statistics</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEUxIMoWKt3wUvA89Z87Ue8SbEqFixsPS-vyWs3ku7WZPfQu3-421Y8DY_5zfAYQm45m3DO9MNyUU4EE3wiD6fKzsiIa6kTLfP0nIwY0zKRBZeX5CrGL8a4SpkYkZ9F3XYtejRdaBta1ghdTaGxdOEhboFOawgb12zo4HY10nnfQKBlH9Zg8JGWuHXQgN93ztCy9X3n2iYeC2a99_vk3TV48BYQBvGYuCaZove0dNvewxG_Jhdr8BFv_nRMPmfPy-lrMv94eZs-zRMjNO8Sm2VW6NTaVBWZhVwpXax1vmKCSWZ1XnAjjM1UIY1BOWQglTkAIFd2ZQomx-T-1LsL7XePsau-2j4M38dKpIUQqhBcDBQ7USa0MQZcV7vgthD2FWfVYdxq2Lo6bF39bT1E7k4Rh4j_uE7VAEn5C1_ie_Q</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhao, Jianxun</creator><creator>Wei, Xinpeng</creator><creator>Du, Xiaoping</creator><creator>He, Xiaoming</creator><creator>Han, Daoru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6186-1777</orcidid><orcidid>https://orcid.org/0000-0003-1270-4972</orcidid></search><sort><creationdate>20211001</creationdate><title>Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations</title><author>Zhao, Jianxun ; Wei, Xinpeng ; Du, Xiaoping ; He, Xiaoming ; Han, Daoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d66d295dd5486da74498f97b02030d9781c2cd6483cce3c29a537aaae14dbc803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Codes</topic><topic>Electric potential</topic><topic>Electrons</topic><topic>Equatorial regions</topic><topic>Finite difference method</topic><topic>Lunar surface</topic><topic>Mathematical models</topic><topic>Maxwellian distribution</topic><topic>Moon</topic><topic>Numerical models</topic><topic>Particle in cell technique</topic><topic>particle-in-cell (PIC)</topic><topic>photoelectron sheath</topic><topic>Photoelectrons</topic><topic>Plasmas</topic><topic>semianalytic solution</topic><topic>Sheaths</topic><topic>Sociology</topic><topic>Solar wind</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jianxun</creatorcontrib><creatorcontrib>Wei, Xinpeng</creatorcontrib><creatorcontrib>Du, Xiaoping</creatorcontrib><creatorcontrib>He, Xiaoming</creatorcontrib><creatorcontrib>Han, Daoru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Jianxun</au><au>Wei, Xinpeng</au><au>Du, Xiaoping</au><au>He, Xiaoming</au><au>Han, Daoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>49</volume><issue>10</issue><spage>3036</spage><epage>3050</epage><pages>3036-3050</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract><![CDATA[This article presents the derivation of semianalytic solutions to a new 1-D photoelectron sheath model near the lunar surface. The plasma species include the cold solar wind protons, drifting Maxwellian solar wind electrons, and Maxwellian photoelectrons emitted from the surface. The semianalytic model is then numerically solved to obtain profiles of quantities of interest as functions of the vertical distance from the surface. A fully-kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is then utilized to simulate the 1-D photoelectron sheath and the results agree well with the numerical solution to the semianalytic model. A <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution for solar wind electrons is also implemented to the FD-PIC code to compare with the Maxwellian distribution. Results show that photoelectron sheath may reach as high as close to 100 m above the illuminated flat lunar surface near the terminator region and up to about 50 m near the equator region. Our results show that under average solar wind condition, the photoelectron sheath profiles obtained with Maxwellian and <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution (with <inline-formula> <tex-math notation="LaTeX">\kappa = 4.5 </tex-math></inline-formula>) are very close for 1-D numerical results.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2021.3110946</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6186-1777</orcidid><orcidid>https://orcid.org/0000-0003-1270-4972</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2021-10, Vol.49 (10), p.3036-3050 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_9540213 |
source | IEEE Electronic Library (IEL) |
subjects | Codes Electric potential Electrons Equatorial regions Finite difference method Lunar surface Mathematical models Maxwellian distribution Moon Numerical models Particle in cell technique particle-in-cell (PIC) photoelectron sheath Photoelectrons Plasmas semianalytic solution Sheaths Sociology Solar wind Statistics |
title | Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectron%20Sheath%20and%20Plasma%20Charging%20on%20the%20Lunar%20Surface:%20Semianalytic%20Solutions%20and%20Fully-Kinetic%20Particle-in-Cell%20Simulations&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Zhao,%20Jianxun&rft.date=2021-10-01&rft.volume=49&rft.issue=10&rft.spage=3036&rft.epage=3050&rft.pages=3036-3050&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2021.3110946&rft_dat=%3Cproquest_RIE%3E2582248212%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582248212&rft_id=info:pmid/&rft_ieee_id=9540213&rfr_iscdi=true |