Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations

This article presents the derivation of semianalytic solutions to a new 1-D photoelectron sheath model near the lunar surface. The plasma species include the cold solar wind protons, drifting Maxwellian solar wind electrons, and Maxwellian photoelectrons emitted from the surface. The semianalytic mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2021-10, Vol.49 (10), p.3036-3050
Hauptverfasser: Zhao, Jianxun, Wei, Xinpeng, Du, Xiaoping, He, Xiaoming, Han, Daoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3050
container_issue 10
container_start_page 3036
container_title IEEE transactions on plasma science
container_volume 49
creator Zhao, Jianxun
Wei, Xinpeng
Du, Xiaoping
He, Xiaoming
Han, Daoru
description This article presents the derivation of semianalytic solutions to a new 1-D photoelectron sheath model near the lunar surface. The plasma species include the cold solar wind protons, drifting Maxwellian solar wind electrons, and Maxwellian photoelectrons emitted from the surface. The semianalytic model is then numerically solved to obtain profiles of quantities of interest as functions of the vertical distance from the surface. A fully-kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is then utilized to simulate the 1-D photoelectron sheath and the results agree well with the numerical solution to the semianalytic model. A \kappa -distribution for solar wind electrons is also implemented to the FD-PIC code to compare with the Maxwellian distribution. Results show that photoelectron sheath may reach as high as close to 100 m above the illuminated flat lunar surface near the terminator region and up to about 50 m near the equator region. Our results show that under average solar wind condition, the photoelectron sheath profiles obtained with Maxwellian and \kappa -distribution (with \kappa = 4.5 ) are very close for 1-D numerical results.
doi_str_mv 10.1109/TPS.2021.3110946
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9540213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9540213</ieee_id><sourcerecordid>2582248212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d66d295dd5486da74498f97b02030d9781c2cd6483cce3c29a537aaae14dbc803</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKt3wUvA89Z87Ue8SbEqFixsPS-vyWs3ku7WZPfQu3-421Y8DY_5zfAYQm45m3DO9MNyUU4EE3wiD6fKzsiIa6kTLfP0nIwY0zKRBZeX5CrGL8a4SpkYkZ9F3XYtejRdaBta1ghdTaGxdOEhboFOawgb12zo4HY10nnfQKBlH9Zg8JGWuHXQgN93ztCy9X3n2iYeC2a99_vk3TV48BYQBvGYuCaZove0dNvewxG_Jhdr8BFv_nRMPmfPy-lrMv94eZs-zRMjNO8Sm2VW6NTaVBWZhVwpXax1vmKCSWZ1XnAjjM1UIY1BOWQglTkAIFd2ZQomx-T-1LsL7XePsau-2j4M38dKpIUQqhBcDBQ7USa0MQZcV7vgthD2FWfVYdxq2Lo6bF39bT1E7k4Rh4j_uE7VAEn5C1_ie_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582248212</pqid></control><display><type>article</type><title>Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Jianxun ; Wei, Xinpeng ; Du, Xiaoping ; He, Xiaoming ; Han, Daoru</creator><creatorcontrib>Zhao, Jianxun ; Wei, Xinpeng ; Du, Xiaoping ; He, Xiaoming ; Han, Daoru</creatorcontrib><description><![CDATA[This article presents the derivation of semianalytic solutions to a new 1-D photoelectron sheath model near the lunar surface. The plasma species include the cold solar wind protons, drifting Maxwellian solar wind electrons, and Maxwellian photoelectrons emitted from the surface. The semianalytic model is then numerically solved to obtain profiles of quantities of interest as functions of the vertical distance from the surface. A fully-kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is then utilized to simulate the 1-D photoelectron sheath and the results agree well with the numerical solution to the semianalytic model. A <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution for solar wind electrons is also implemented to the FD-PIC code to compare with the Maxwellian distribution. Results show that photoelectron sheath may reach as high as close to 100 m above the illuminated flat lunar surface near the terminator region and up to about 50 m near the equator region. Our results show that under average solar wind condition, the photoelectron sheath profiles obtained with Maxwellian and <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution (with <inline-formula> <tex-math notation="LaTeX">\kappa = 4.5 </tex-math></inline-formula>) are very close for 1-D numerical results.]]></description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2021.3110946</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Electric potential ; Electrons ; Equatorial regions ; Finite difference method ; Lunar surface ; Mathematical models ; Maxwellian distribution ; Moon ; Numerical models ; Particle in cell technique ; particle-in-cell (PIC) ; photoelectron sheath ; Photoelectrons ; Plasmas ; semianalytic solution ; Sheaths ; Sociology ; Solar wind ; Statistics</subject><ispartof>IEEE transactions on plasma science, 2021-10, Vol.49 (10), p.3036-3050</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d66d295dd5486da74498f97b02030d9781c2cd6483cce3c29a537aaae14dbc803</citedby><cites>FETCH-LOGICAL-c291t-d66d295dd5486da74498f97b02030d9781c2cd6483cce3c29a537aaae14dbc803</cites><orcidid>0000-0001-6186-1777 ; 0000-0003-1270-4972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9540213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9540213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Jianxun</creatorcontrib><creatorcontrib>Wei, Xinpeng</creatorcontrib><creatorcontrib>Du, Xiaoping</creatorcontrib><creatorcontrib>He, Xiaoming</creatorcontrib><creatorcontrib>Han, Daoru</creatorcontrib><title>Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description><![CDATA[This article presents the derivation of semianalytic solutions to a new 1-D photoelectron sheath model near the lunar surface. The plasma species include the cold solar wind protons, drifting Maxwellian solar wind electrons, and Maxwellian photoelectrons emitted from the surface. The semianalytic model is then numerically solved to obtain profiles of quantities of interest as functions of the vertical distance from the surface. A fully-kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is then utilized to simulate the 1-D photoelectron sheath and the results agree well with the numerical solution to the semianalytic model. A <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution for solar wind electrons is also implemented to the FD-PIC code to compare with the Maxwellian distribution. Results show that photoelectron sheath may reach as high as close to 100 m above the illuminated flat lunar surface near the terminator region and up to about 50 m near the equator region. Our results show that under average solar wind condition, the photoelectron sheath profiles obtained with Maxwellian and <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution (with <inline-formula> <tex-math notation="LaTeX">\kappa = 4.5 </tex-math></inline-formula>) are very close for 1-D numerical results.]]></description><subject>Codes</subject><subject>Electric potential</subject><subject>Electrons</subject><subject>Equatorial regions</subject><subject>Finite difference method</subject><subject>Lunar surface</subject><subject>Mathematical models</subject><subject>Maxwellian distribution</subject><subject>Moon</subject><subject>Numerical models</subject><subject>Particle in cell technique</subject><subject>particle-in-cell (PIC)</subject><subject>photoelectron sheath</subject><subject>Photoelectrons</subject><subject>Plasmas</subject><subject>semianalytic solution</subject><subject>Sheaths</subject><subject>Sociology</subject><subject>Solar wind</subject><subject>Statistics</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEUxIMoWKt3wUvA89Z87Ue8SbEqFixsPS-vyWs3ku7WZPfQu3-421Y8DY_5zfAYQm45m3DO9MNyUU4EE3wiD6fKzsiIa6kTLfP0nIwY0zKRBZeX5CrGL8a4SpkYkZ9F3XYtejRdaBta1ghdTaGxdOEhboFOawgb12zo4HY10nnfQKBlH9Zg8JGWuHXQgN93ztCy9X3n2iYeC2a99_vk3TV48BYQBvGYuCaZove0dNvewxG_Jhdr8BFv_nRMPmfPy-lrMv94eZs-zRMjNO8Sm2VW6NTaVBWZhVwpXax1vmKCSWZ1XnAjjM1UIY1BOWQglTkAIFd2ZQomx-T-1LsL7XePsau-2j4M38dKpIUQqhBcDBQ7USa0MQZcV7vgthD2FWfVYdxq2Lo6bF39bT1E7k4Rh4j_uE7VAEn5C1_ie_Q</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhao, Jianxun</creator><creator>Wei, Xinpeng</creator><creator>Du, Xiaoping</creator><creator>He, Xiaoming</creator><creator>Han, Daoru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6186-1777</orcidid><orcidid>https://orcid.org/0000-0003-1270-4972</orcidid></search><sort><creationdate>20211001</creationdate><title>Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations</title><author>Zhao, Jianxun ; Wei, Xinpeng ; Du, Xiaoping ; He, Xiaoming ; Han, Daoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d66d295dd5486da74498f97b02030d9781c2cd6483cce3c29a537aaae14dbc803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Codes</topic><topic>Electric potential</topic><topic>Electrons</topic><topic>Equatorial regions</topic><topic>Finite difference method</topic><topic>Lunar surface</topic><topic>Mathematical models</topic><topic>Maxwellian distribution</topic><topic>Moon</topic><topic>Numerical models</topic><topic>Particle in cell technique</topic><topic>particle-in-cell (PIC)</topic><topic>photoelectron sheath</topic><topic>Photoelectrons</topic><topic>Plasmas</topic><topic>semianalytic solution</topic><topic>Sheaths</topic><topic>Sociology</topic><topic>Solar wind</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jianxun</creatorcontrib><creatorcontrib>Wei, Xinpeng</creatorcontrib><creatorcontrib>Du, Xiaoping</creatorcontrib><creatorcontrib>He, Xiaoming</creatorcontrib><creatorcontrib>Han, Daoru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Jianxun</au><au>Wei, Xinpeng</au><au>Du, Xiaoping</au><au>He, Xiaoming</au><au>Han, Daoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>49</volume><issue>10</issue><spage>3036</spage><epage>3050</epage><pages>3036-3050</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract><![CDATA[This article presents the derivation of semianalytic solutions to a new 1-D photoelectron sheath model near the lunar surface. The plasma species include the cold solar wind protons, drifting Maxwellian solar wind electrons, and Maxwellian photoelectrons emitted from the surface. The semianalytic model is then numerically solved to obtain profiles of quantities of interest as functions of the vertical distance from the surface. A fully-kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is then utilized to simulate the 1-D photoelectron sheath and the results agree well with the numerical solution to the semianalytic model. A <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution for solar wind electrons is also implemented to the FD-PIC code to compare with the Maxwellian distribution. Results show that photoelectron sheath may reach as high as close to 100 m above the illuminated flat lunar surface near the terminator region and up to about 50 m near the equator region. Our results show that under average solar wind condition, the photoelectron sheath profiles obtained with Maxwellian and <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-distribution (with <inline-formula> <tex-math notation="LaTeX">\kappa = 4.5 </tex-math></inline-formula>) are very close for 1-D numerical results.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2021.3110946</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6186-1777</orcidid><orcidid>https://orcid.org/0000-0003-1270-4972</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2021-10, Vol.49 (10), p.3036-3050
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_9540213
source IEEE Electronic Library (IEL)
subjects Codes
Electric potential
Electrons
Equatorial regions
Finite difference method
Lunar surface
Mathematical models
Maxwellian distribution
Moon
Numerical models
Particle in cell technique
particle-in-cell (PIC)
photoelectron sheath
Photoelectrons
Plasmas
semianalytic solution
Sheaths
Sociology
Solar wind
Statistics
title Photoelectron Sheath and Plasma Charging on the Lunar Surface: Semianalytic Solutions and Fully-Kinetic Particle-in-Cell Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectron%20Sheath%20and%20Plasma%20Charging%20on%20the%20Lunar%20Surface:%20Semianalytic%20Solutions%20and%20Fully-Kinetic%20Particle-in-Cell%20Simulations&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Zhao,%20Jianxun&rft.date=2021-10-01&rft.volume=49&rft.issue=10&rft.spage=3036&rft.epage=3050&rft.pages=3036-3050&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2021.3110946&rft_dat=%3Cproquest_RIE%3E2582248212%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582248212&rft_id=info:pmid/&rft_ieee_id=9540213&rfr_iscdi=true