A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine

The disease-free growth of a plant is highly influential for both environment and human life, as numerous microorganisms/viruses/fungus may affect the growth and agricultural production of a plant. Early detection and treatment thus becomes necessary and must be treated on time. The existing vision...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Dwivedi, Rudresh, Dutta, Tanima, Hu, Yu-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Dwivedi, Rudresh
Dutta, Tanima
Hu, Yu-Chen
description The disease-free growth of a plant is highly influential for both environment and human life, as numerous microorganisms/viruses/fungus may affect the growth and agricultural production of a plant. Early detection and treatment thus becomes necessary and must be treated on time. The existing vision techniques either involve image segmentation or feature classification/regression applied over aerial images. This results in an increase in time and cost consumption due to various challenges, such as generalization ability and learning cost. Therefore, a feature-based disease detection approach with minimal learning time and generalization ability could be fairly befitting such as an extreme learning machine (ELM). In this letter, we demonstrate an algorithm, L1-ELM, after employing Kuan filtering for preprocessing and different feature computations. At the evaluation stage, the experimentation performed over benchmark plant datasets confirms that L1-ELM outperforms all existing one-class classification algorithms, preserving optimal learning and better generalization.
doi_str_mv 10.1109/LGRS.2021.3110287
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9539246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9539246</ieee_id><sourcerecordid>2616718995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7d89a5206d7a4e2ebc5c44ace269e0021786f82ff7dbb2f538e544ddf0586cbd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZpEmTXs5tTqFT8AP0KmTpicuw7Uw6UH-9qRtena_3vOfwIHRO8IgQXFyV88enEcWUjLJYUykO0IBwLlPMBTnsc8ZTXsjXY3QSwhpjyqQUA_Q2TkrQNpm6ADpAMoUOTOfaJlmAWenGhTq5joMqia2SpPetr5OFa1ztfvSfbvbVeaiht_GNa96ThTYr18ApOrL6I8DZPg7Ry83seXKblg_zu8m4TA0tsi4VlSw0pzivhGZAYWm4YUwboHkB8U0iZG4ltVZUyyW1PJPAGasqi7nMzbLKhuhy57vx7ecWQqfW7dY38aSiOckFkUXBo4rsVMa3IXiwauNdrf23Ilj1BFVPUPUE1Z5g3LnY7TgA-NdHs4KyPPsFn0xsOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616718995</pqid></control><display><type>article</type><title>A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine</title><source>IEEE Electronic Library (IEL)</source><creator>Dwivedi, Rudresh ; Dutta, Tanima ; Hu, Yu-Chen</creator><creatorcontrib>Dwivedi, Rudresh ; Dutta, Tanima ; Hu, Yu-Chen</creatorcontrib><description>The disease-free growth of a plant is highly influential for both environment and human life, as numerous microorganisms/viruses/fungus may affect the growth and agricultural production of a plant. Early detection and treatment thus becomes necessary and must be treated on time. The existing vision techniques either involve image segmentation or feature classification/regression applied over aerial images. This results in an increase in time and cost consumption due to various challenges, such as generalization ability and learning cost. Therefore, a feature-based disease detection approach with minimal learning time and generalization ability could be fairly befitting such as an extreme learning machine (ELM). In this letter, we demonstrate an algorithm, L1-ELM, after employing Kuan filtering for preprocessing and different feature computations. At the evaluation stage, the experimentation performed over benchmark plant datasets confirms that L1-ELM outperforms all existing one-class classification algorithms, preserving optimal learning and better generalization.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3110287</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agricultural production ; Algorithms ; Artificial neural networks ; Biological system modeling ; Classification ; Disease detection ; Disease recognition ; Diseases ; Experimentation ; extreme learning machine (ELM) ; Extreme learning machines ; Feature extraction ; Fungi ; Image classification ; Image color analysis ; Image processing ; Image segmentation ; leaf disease ; Learning algorithms ; Machine learning ; Microorganisms ; Minimization ; Optimization ; Plant diseases ; precision agriculture ; Training ; Viruses</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7d89a5206d7a4e2ebc5c44ace269e0021786f82ff7dbb2f538e544ddf0586cbd3</citedby><cites>FETCH-LOGICAL-c293t-7d89a5206d7a4e2ebc5c44ace269e0021786f82ff7dbb2f538e544ddf0586cbd3</cites><orcidid>0000-0002-2801-0687 ; 0000-0001-7836-2683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9539246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9539246$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dwivedi, Rudresh</creatorcontrib><creatorcontrib>Dutta, Tanima</creatorcontrib><creatorcontrib>Hu, Yu-Chen</creatorcontrib><title>A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The disease-free growth of a plant is highly influential for both environment and human life, as numerous microorganisms/viruses/fungus may affect the growth and agricultural production of a plant. Early detection and treatment thus becomes necessary and must be treated on time. The existing vision techniques either involve image segmentation or feature classification/regression applied over aerial images. This results in an increase in time and cost consumption due to various challenges, such as generalization ability and learning cost. Therefore, a feature-based disease detection approach with minimal learning time and generalization ability could be fairly befitting such as an extreme learning machine (ELM). In this letter, we demonstrate an algorithm, L1-ELM, after employing Kuan filtering for preprocessing and different feature computations. At the evaluation stage, the experimentation performed over benchmark plant datasets confirms that L1-ELM outperforms all existing one-class classification algorithms, preserving optimal learning and better generalization.</description><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Classification</subject><subject>Disease detection</subject><subject>Disease recognition</subject><subject>Diseases</subject><subject>Experimentation</subject><subject>extreme learning machine (ELM)</subject><subject>Extreme learning machines</subject><subject>Feature extraction</subject><subject>Fungi</subject><subject>Image classification</subject><subject>Image color analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>leaf disease</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Microorganisms</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Plant diseases</subject><subject>precision agriculture</subject><subject>Training</subject><subject>Viruses</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZpEmTXs5tTqFT8AP0KmTpicuw7Uw6UH-9qRtena_3vOfwIHRO8IgQXFyV88enEcWUjLJYUykO0IBwLlPMBTnsc8ZTXsjXY3QSwhpjyqQUA_Q2TkrQNpm6ADpAMoUOTOfaJlmAWenGhTq5joMqia2SpPetr5OFa1ztfvSfbvbVeaiht_GNa96ThTYr18ApOrL6I8DZPg7Ry83seXKblg_zu8m4TA0tsi4VlSw0pzivhGZAYWm4YUwboHkB8U0iZG4ltVZUyyW1PJPAGasqi7nMzbLKhuhy57vx7ecWQqfW7dY38aSiOckFkUXBo4rsVMa3IXiwauNdrf23Ilj1BFVPUPUE1Z5g3LnY7TgA-NdHs4KyPPsFn0xsOw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dwivedi, Rudresh</creator><creator>Dutta, Tanima</creator><creator>Hu, Yu-Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2801-0687</orcidid><orcidid>https://orcid.org/0000-0001-7836-2683</orcidid></search><sort><creationdate>2022</creationdate><title>A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine</title><author>Dwivedi, Rudresh ; Dutta, Tanima ; Hu, Yu-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7d89a5206d7a4e2ebc5c44ace269e0021786f82ff7dbb2f538e544ddf0586cbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Classification</topic><topic>Disease detection</topic><topic>Disease recognition</topic><topic>Diseases</topic><topic>Experimentation</topic><topic>extreme learning machine (ELM)</topic><topic>Extreme learning machines</topic><topic>Feature extraction</topic><topic>Fungi</topic><topic>Image classification</topic><topic>Image color analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>leaf disease</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Microorganisms</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Plant diseases</topic><topic>precision agriculture</topic><topic>Training</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dwivedi, Rudresh</creatorcontrib><creatorcontrib>Dutta, Tanima</creatorcontrib><creatorcontrib>Hu, Yu-Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dwivedi, Rudresh</au><au>Dutta, Tanima</au><au>Hu, Yu-Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The disease-free growth of a plant is highly influential for both environment and human life, as numerous microorganisms/viruses/fungus may affect the growth and agricultural production of a plant. Early detection and treatment thus becomes necessary and must be treated on time. The existing vision techniques either involve image segmentation or feature classification/regression applied over aerial images. This results in an increase in time and cost consumption due to various challenges, such as generalization ability and learning cost. Therefore, a feature-based disease detection approach with minimal learning time and generalization ability could be fairly befitting such as an extreme learning machine (ELM). In this letter, we demonstrate an algorithm, L1-ELM, after employing Kuan filtering for preprocessing and different feature computations. At the evaluation stage, the experimentation performed over benchmark plant datasets confirms that L1-ELM outperforms all existing one-class classification algorithms, preserving optimal learning and better generalization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3110287</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2801-0687</orcidid><orcidid>https://orcid.org/0000-0001-7836-2683</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9539246
source IEEE Electronic Library (IEL)
subjects Agricultural production
Algorithms
Artificial neural networks
Biological system modeling
Classification
Disease detection
Disease recognition
Diseases
Experimentation
extreme learning machine (ELM)
Extreme learning machines
Feature extraction
Fungi
Image classification
Image color analysis
Image processing
Image segmentation
leaf disease
Learning algorithms
Machine learning
Microorganisms
Minimization
Optimization
Plant diseases
precision agriculture
Training
Viruses
title A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Leaf%20Disease%20Detection%20Mechanism%20Based%20on%20L1-Norm%20Minimization%20Extreme%20Learning%20Machine&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Dwivedi,%20Rudresh&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3110287&rft_dat=%3Cproquest_RIE%3E2616718995%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616718995&rft_id=info:pmid/&rft_ieee_id=9539246&rfr_iscdi=true