A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine
The disease-free growth of a plant is highly influential for both environment and human life, as numerous microorganisms/viruses/fungus may affect the growth and agricultural production of a plant. Early detection and treatment thus becomes necessary and must be treated on time. The existing vision...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Dwivedi, Rudresh Dutta, Tanima Hu, Yu-Chen |
description | The disease-free growth of a plant is highly influential for both environment and human life, as numerous microorganisms/viruses/fungus may affect the growth and agricultural production of a plant. Early detection and treatment thus becomes necessary and must be treated on time. The existing vision techniques either involve image segmentation or feature classification/regression applied over aerial images. This results in an increase in time and cost consumption due to various challenges, such as generalization ability and learning cost. Therefore, a feature-based disease detection approach with minimal learning time and generalization ability could be fairly befitting such as an extreme learning machine (ELM). In this letter, we demonstrate an algorithm, L1-ELM, after employing Kuan filtering for preprocessing and different feature computations. At the evaluation stage, the experimentation performed over benchmark plant datasets confirms that L1-ELM outperforms all existing one-class classification algorithms, preserving optimal learning and better generalization. |
doi_str_mv | 10.1109/LGRS.2021.3110287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9539246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9539246</ieee_id><sourcerecordid>2616718995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7d89a5206d7a4e2ebc5c44ace269e0021786f82ff7dbb2f538e544ddf0586cbd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZpEmTXs5tTqFT8AP0KmTpicuw7Uw6UH-9qRtena_3vOfwIHRO8IgQXFyV88enEcWUjLJYUykO0IBwLlPMBTnsc8ZTXsjXY3QSwhpjyqQUA_Q2TkrQNpm6ADpAMoUOTOfaJlmAWenGhTq5joMqia2SpPetr5OFa1ztfvSfbvbVeaiht_GNa96ThTYr18ApOrL6I8DZPg7Ry83seXKblg_zu8m4TA0tsi4VlSw0pzivhGZAYWm4YUwboHkB8U0iZG4ltVZUyyW1PJPAGasqi7nMzbLKhuhy57vx7ecWQqfW7dY38aSiOckFkUXBo4rsVMa3IXiwauNdrf23Ilj1BFVPUPUE1Z5g3LnY7TgA-NdHs4KyPPsFn0xsOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616718995</pqid></control><display><type>article</type><title>A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine</title><source>IEEE Electronic Library (IEL)</source><creator>Dwivedi, Rudresh ; Dutta, Tanima ; Hu, Yu-Chen</creator><creatorcontrib>Dwivedi, Rudresh ; Dutta, Tanima ; Hu, Yu-Chen</creatorcontrib><description>The disease-free growth of a plant is highly influential for both environment and human life, as numerous microorganisms/viruses/fungus may affect the growth and agricultural production of a plant. Early detection and treatment thus becomes necessary and must be treated on time. The existing vision techniques either involve image segmentation or feature classification/regression applied over aerial images. This results in an increase in time and cost consumption due to various challenges, such as generalization ability and learning cost. Therefore, a feature-based disease detection approach with minimal learning time and generalization ability could be fairly befitting such as an extreme learning machine (ELM). In this letter, we demonstrate an algorithm, L1-ELM, after employing Kuan filtering for preprocessing and different feature computations. At the evaluation stage, the experimentation performed over benchmark plant datasets confirms that L1-ELM outperforms all existing one-class classification algorithms, preserving optimal learning and better generalization.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3110287</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agricultural production ; Algorithms ; Artificial neural networks ; Biological system modeling ; Classification ; Disease detection ; Disease recognition ; Diseases ; Experimentation ; extreme learning machine (ELM) ; Extreme learning machines ; Feature extraction ; Fungi ; Image classification ; Image color analysis ; Image processing ; Image segmentation ; leaf disease ; Learning algorithms ; Machine learning ; Microorganisms ; Minimization ; Optimization ; Plant diseases ; precision agriculture ; Training ; Viruses</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7d89a5206d7a4e2ebc5c44ace269e0021786f82ff7dbb2f538e544ddf0586cbd3</citedby><cites>FETCH-LOGICAL-c293t-7d89a5206d7a4e2ebc5c44ace269e0021786f82ff7dbb2f538e544ddf0586cbd3</cites><orcidid>0000-0002-2801-0687 ; 0000-0001-7836-2683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9539246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9539246$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dwivedi, Rudresh</creatorcontrib><creatorcontrib>Dutta, Tanima</creatorcontrib><creatorcontrib>Hu, Yu-Chen</creatorcontrib><title>A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The disease-free growth of a plant is highly influential for both environment and human life, as numerous microorganisms/viruses/fungus may affect the growth and agricultural production of a plant. Early detection and treatment thus becomes necessary and must be treated on time. The existing vision techniques either involve image segmentation or feature classification/regression applied over aerial images. This results in an increase in time and cost consumption due to various challenges, such as generalization ability and learning cost. Therefore, a feature-based disease detection approach with minimal learning time and generalization ability could be fairly befitting such as an extreme learning machine (ELM). In this letter, we demonstrate an algorithm, L1-ELM, after employing Kuan filtering for preprocessing and different feature computations. At the evaluation stage, the experimentation performed over benchmark plant datasets confirms that L1-ELM outperforms all existing one-class classification algorithms, preserving optimal learning and better generalization.</description><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Classification</subject><subject>Disease detection</subject><subject>Disease recognition</subject><subject>Diseases</subject><subject>Experimentation</subject><subject>extreme learning machine (ELM)</subject><subject>Extreme learning machines</subject><subject>Feature extraction</subject><subject>Fungi</subject><subject>Image classification</subject><subject>Image color analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>leaf disease</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Microorganisms</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Plant diseases</subject><subject>precision agriculture</subject><subject>Training</subject><subject>Viruses</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZpEmTXs5tTqFT8AP0KmTpicuw7Uw6UH-9qRtena_3vOfwIHRO8IgQXFyV88enEcWUjLJYUykO0IBwLlPMBTnsc8ZTXsjXY3QSwhpjyqQUA_Q2TkrQNpm6ADpAMoUOTOfaJlmAWenGhTq5joMqia2SpPetr5OFa1ztfvSfbvbVeaiht_GNa96ThTYr18ApOrL6I8DZPg7Ry83seXKblg_zu8m4TA0tsi4VlSw0pzivhGZAYWm4YUwboHkB8U0iZG4ltVZUyyW1PJPAGasqi7nMzbLKhuhy57vx7ecWQqfW7dY38aSiOckFkUXBo4rsVMa3IXiwauNdrf23Ilj1BFVPUPUE1Z5g3LnY7TgA-NdHs4KyPPsFn0xsOw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dwivedi, Rudresh</creator><creator>Dutta, Tanima</creator><creator>Hu, Yu-Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2801-0687</orcidid><orcidid>https://orcid.org/0000-0001-7836-2683</orcidid></search><sort><creationdate>2022</creationdate><title>A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine</title><author>Dwivedi, Rudresh ; Dutta, Tanima ; Hu, Yu-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7d89a5206d7a4e2ebc5c44ace269e0021786f82ff7dbb2f538e544ddf0586cbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Classification</topic><topic>Disease detection</topic><topic>Disease recognition</topic><topic>Diseases</topic><topic>Experimentation</topic><topic>extreme learning machine (ELM)</topic><topic>Extreme learning machines</topic><topic>Feature extraction</topic><topic>Fungi</topic><topic>Image classification</topic><topic>Image color analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>leaf disease</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Microorganisms</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Plant diseases</topic><topic>precision agriculture</topic><topic>Training</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dwivedi, Rudresh</creatorcontrib><creatorcontrib>Dutta, Tanima</creatorcontrib><creatorcontrib>Hu, Yu-Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dwivedi, Rudresh</au><au>Dutta, Tanima</au><au>Hu, Yu-Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The disease-free growth of a plant is highly influential for both environment and human life, as numerous microorganisms/viruses/fungus may affect the growth and agricultural production of a plant. Early detection and treatment thus becomes necessary and must be treated on time. The existing vision techniques either involve image segmentation or feature classification/regression applied over aerial images. This results in an increase in time and cost consumption due to various challenges, such as generalization ability and learning cost. Therefore, a feature-based disease detection approach with minimal learning time and generalization ability could be fairly befitting such as an extreme learning machine (ELM). In this letter, we demonstrate an algorithm, L1-ELM, after employing Kuan filtering for preprocessing and different feature computations. At the evaluation stage, the experimentation performed over benchmark plant datasets confirms that L1-ELM outperforms all existing one-class classification algorithms, preserving optimal learning and better generalization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3110287</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2801-0687</orcidid><orcidid>https://orcid.org/0000-0001-7836-2683</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_9539246 |
source | IEEE Electronic Library (IEL) |
subjects | Agricultural production Algorithms Artificial neural networks Biological system modeling Classification Disease detection Disease recognition Diseases Experimentation extreme learning machine (ELM) Extreme learning machines Feature extraction Fungi Image classification Image color analysis Image processing Image segmentation leaf disease Learning algorithms Machine learning Microorganisms Minimization Optimization Plant diseases precision agriculture Training Viruses |
title | A Leaf Disease Detection Mechanism Based on L1-Norm Minimization Extreme Learning Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Leaf%20Disease%20Detection%20Mechanism%20Based%20on%20L1-Norm%20Minimization%20Extreme%20Learning%20Machine&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Dwivedi,%20Rudresh&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3110287&rft_dat=%3Cproquest_RIE%3E2616718995%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616718995&rft_id=info:pmid/&rft_ieee_id=9539246&rfr_iscdi=true |