A Fast Cross-Layer Dynamic Power Estimation Method by Tracking Cycle-Accurate Activity Factors With Spark Streaming

The advent of autonomous power-limited systems poses a new challenge for early design space exploration. The existing architecture-level power evaluation tools lose accuracy due to ignoring features of circuit-level behaviors and influences of process, voltage, and temperature variations. Although p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2022-04, Vol.30 (4), p.353-364
Hauptverfasser: Jin, Leilei, Fu, Wenjie, Ling, Ming, Shi, Longxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue 4
container_start_page 353
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 30
creator Jin, Leilei
Fu, Wenjie
Ling, Ming
Shi, Longxing
description The advent of autonomous power-limited systems poses a new challenge for early design space exploration. The existing architecture-level power evaluation tools lose accuracy due to ignoring features of circuit-level behaviors and influences of process, voltage, and temperature variations. Although power estimations based on SPICE or PrimeTime PX (PTPX) are accurate enough, they come at the cost of long simulation time and are available only in very late phases of design flow. In this article, a fast and accurate dynamic power evaluation method is proposed, which estimates activity factors at the circuit level. The impact of process variation at the gate level is considered through the proposed effective capacitance model. Activity factors are then estimated by the model and input vectors of the circuit. Input vectors are generated by architecture-level simulations in the form of streaming. For real-time and high-speed power evaluation, a data streaming framework is proposed for massive parallelism. The cross-layer estimation is verified based on the functional units of PULPino processor running SPEC CPU2006 benchmarks. Compared with the SPICE results using SMIC 28-nm PDK, our cycle-by-cycle dynamic power analysis shows an average error of 5.4%. Meanwhile, our approach realizes 65.2% faster than the traditional PTPX simulation and 48.8% faster compared with the state-of-art cross-level evaluation method.
doi_str_mv 10.1109/TVLSI.2021.3111000
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9537919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9537919</ieee_id><sourcerecordid>2641995082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-d6eef924b7ef1c7faa4dc871bc80bc105d0b9d30e1e88bc97f3a39350467d0c53</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwA7CxxDplbOflZRRaqBQEUgssLcdxWveRFNsF5e9xacVs5qG5dzQnCG4xjDAG9jD_KGfTEQGCRxT7CcBZMMBxnIbMx7mvIaFhRjBcBlfWrgBwFDEYBDZHE2EdKkxnbViKXhn02LdiqyV66358N7ZOb4XTXYtelFt2Nap6NDdCrnW7QEUvNyrMpdwb4RTKpdPf2vXeVLrOWPSp3RLNdsKs0cwZ5X3bxXVw0YiNVTenPAzeJ-N58RyWr0_TIi9DSUjswjpRqmEkqlLVYJk2QkS1zFJcyQwqiSGuoWI1BYVVllWSpQ0VlNEYoiStQcZ0GNwffXem-9or6_iq25vWn-QkiTBjMWTEb5HjljwgMKrhO-MfNj3HwA9w-R9cfoDLT3C96O4o0kqpfwGLacowo7-OOHbh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641995082</pqid></control><display><type>article</type><title>A Fast Cross-Layer Dynamic Power Estimation Method by Tracking Cycle-Accurate Activity Factors With Spark Streaming</title><source>IEEE Electronic Library (IEL)</source><creator>Jin, Leilei ; Fu, Wenjie ; Ling, Ming ; Shi, Longxing</creator><creatorcontrib>Jin, Leilei ; Fu, Wenjie ; Ling, Ming ; Shi, Longxing</creatorcontrib><description>The advent of autonomous power-limited systems poses a new challenge for early design space exploration. The existing architecture-level power evaluation tools lose accuracy due to ignoring features of circuit-level behaviors and influences of process, voltage, and temperature variations. Although power estimations based on SPICE or PrimeTime PX (PTPX) are accurate enough, they come at the cost of long simulation time and are available only in very late phases of design flow. In this article, a fast and accurate dynamic power evaluation method is proposed, which estimates activity factors at the circuit level. The impact of process variation at the gate level is considered through the proposed effective capacitance model. Activity factors are then estimated by the model and input vectors of the circuit. Input vectors are generated by architecture-level simulations in the form of streaming. For real-time and high-speed power evaluation, a data streaming framework is proposed for massive parallelism. The cross-layer estimation is verified based on the functional units of PULPino processor running SPEC CPU2006 benchmarks. Compared with the SPICE results using SMIC 28-nm PDK, our cycle-by-cycle dynamic power analysis shows an average error of 5.4%. Meanwhile, our approach realizes 65.2% faster than the traditional PTPX simulation and 48.8% faster compared with the state-of-art cross-level evaluation method.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2021.3111000</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity factor ; Capacitance ; Circuits ; Data transmission ; dynamic power ; effective capacitance estimation ; Error analysis ; Estimation ; Integrated circuit modeling ; Logic gates ; Microprocessors ; Power demand ; process variations ; Real-time systems ; Simulation ; worse case power estimation</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2022-04, Vol.30 (4), p.353-364</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-d6eef924b7ef1c7faa4dc871bc80bc105d0b9d30e1e88bc97f3a39350467d0c53</citedby><cites>FETCH-LOGICAL-c225t-d6eef924b7ef1c7faa4dc871bc80bc105d0b9d30e1e88bc97f3a39350467d0c53</cites><orcidid>0000-0002-2772-6712 ; 0000-0002-0534-3593 ; 0000-0002-8866-7189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9537919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9537919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Leilei</creatorcontrib><creatorcontrib>Fu, Wenjie</creatorcontrib><creatorcontrib>Ling, Ming</creatorcontrib><creatorcontrib>Shi, Longxing</creatorcontrib><title>A Fast Cross-Layer Dynamic Power Estimation Method by Tracking Cycle-Accurate Activity Factors With Spark Streaming</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>The advent of autonomous power-limited systems poses a new challenge for early design space exploration. The existing architecture-level power evaluation tools lose accuracy due to ignoring features of circuit-level behaviors and influences of process, voltage, and temperature variations. Although power estimations based on SPICE or PrimeTime PX (PTPX) are accurate enough, they come at the cost of long simulation time and are available only in very late phases of design flow. In this article, a fast and accurate dynamic power evaluation method is proposed, which estimates activity factors at the circuit level. The impact of process variation at the gate level is considered through the proposed effective capacitance model. Activity factors are then estimated by the model and input vectors of the circuit. Input vectors are generated by architecture-level simulations in the form of streaming. For real-time and high-speed power evaluation, a data streaming framework is proposed for massive parallelism. The cross-layer estimation is verified based on the functional units of PULPino processor running SPEC CPU2006 benchmarks. Compared with the SPICE results using SMIC 28-nm PDK, our cycle-by-cycle dynamic power analysis shows an average error of 5.4%. Meanwhile, our approach realizes 65.2% faster than the traditional PTPX simulation and 48.8% faster compared with the state-of-art cross-level evaluation method.</description><subject>Activity factor</subject><subject>Capacitance</subject><subject>Circuits</subject><subject>Data transmission</subject><subject>dynamic power</subject><subject>effective capacitance estimation</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>Integrated circuit modeling</subject><subject>Logic gates</subject><subject>Microprocessors</subject><subject>Power demand</subject><subject>process variations</subject><subject>Real-time systems</subject><subject>Simulation</subject><subject>worse case power estimation</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEEqXwA7CxxDplbOflZRRaqBQEUgssLcdxWveRFNsF5e9xacVs5qG5dzQnCG4xjDAG9jD_KGfTEQGCRxT7CcBZMMBxnIbMx7mvIaFhRjBcBlfWrgBwFDEYBDZHE2EdKkxnbViKXhn02LdiqyV66358N7ZOb4XTXYtelFt2Nap6NDdCrnW7QEUvNyrMpdwb4RTKpdPf2vXeVLrOWPSp3RLNdsKs0cwZ5X3bxXVw0YiNVTenPAzeJ-N58RyWr0_TIi9DSUjswjpRqmEkqlLVYJk2QkS1zFJcyQwqiSGuoWI1BYVVllWSpQ0VlNEYoiStQcZ0GNwffXem-9or6_iq25vWn-QkiTBjMWTEb5HjljwgMKrhO-MfNj3HwA9w-R9cfoDLT3C96O4o0kqpfwGLacowo7-OOHbh</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Jin, Leilei</creator><creator>Fu, Wenjie</creator><creator>Ling, Ming</creator><creator>Shi, Longxing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2772-6712</orcidid><orcidid>https://orcid.org/0000-0002-0534-3593</orcidid><orcidid>https://orcid.org/0000-0002-8866-7189</orcidid></search><sort><creationdate>20220401</creationdate><title>A Fast Cross-Layer Dynamic Power Estimation Method by Tracking Cycle-Accurate Activity Factors With Spark Streaming</title><author>Jin, Leilei ; Fu, Wenjie ; Ling, Ming ; Shi, Longxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-d6eef924b7ef1c7faa4dc871bc80bc105d0b9d30e1e88bc97f3a39350467d0c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activity factor</topic><topic>Capacitance</topic><topic>Circuits</topic><topic>Data transmission</topic><topic>dynamic power</topic><topic>effective capacitance estimation</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>Integrated circuit modeling</topic><topic>Logic gates</topic><topic>Microprocessors</topic><topic>Power demand</topic><topic>process variations</topic><topic>Real-time systems</topic><topic>Simulation</topic><topic>worse case power estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Leilei</creatorcontrib><creatorcontrib>Fu, Wenjie</creatorcontrib><creatorcontrib>Ling, Ming</creatorcontrib><creatorcontrib>Shi, Longxing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Leilei</au><au>Fu, Wenjie</au><au>Ling, Ming</au><au>Shi, Longxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Cross-Layer Dynamic Power Estimation Method by Tracking Cycle-Accurate Activity Factors With Spark Streaming</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>30</volume><issue>4</issue><spage>353</spage><epage>364</epage><pages>353-364</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>ITCOB4</coden><abstract>The advent of autonomous power-limited systems poses a new challenge for early design space exploration. The existing architecture-level power evaluation tools lose accuracy due to ignoring features of circuit-level behaviors and influences of process, voltage, and temperature variations. Although power estimations based on SPICE or PrimeTime PX (PTPX) are accurate enough, they come at the cost of long simulation time and are available only in very late phases of design flow. In this article, a fast and accurate dynamic power evaluation method is proposed, which estimates activity factors at the circuit level. The impact of process variation at the gate level is considered through the proposed effective capacitance model. Activity factors are then estimated by the model and input vectors of the circuit. Input vectors are generated by architecture-level simulations in the form of streaming. For real-time and high-speed power evaluation, a data streaming framework is proposed for massive parallelism. The cross-layer estimation is verified based on the functional units of PULPino processor running SPEC CPU2006 benchmarks. Compared with the SPICE results using SMIC 28-nm PDK, our cycle-by-cycle dynamic power analysis shows an average error of 5.4%. Meanwhile, our approach realizes 65.2% faster than the traditional PTPX simulation and 48.8% faster compared with the state-of-art cross-level evaluation method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2021.3111000</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2772-6712</orcidid><orcidid>https://orcid.org/0000-0002-0534-3593</orcidid><orcidid>https://orcid.org/0000-0002-8866-7189</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2022-04, Vol.30 (4), p.353-364
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_9537919
source IEEE Electronic Library (IEL)
subjects Activity factor
Capacitance
Circuits
Data transmission
dynamic power
effective capacitance estimation
Error analysis
Estimation
Integrated circuit modeling
Logic gates
Microprocessors
Power demand
process variations
Real-time systems
Simulation
worse case power estimation
title A Fast Cross-Layer Dynamic Power Estimation Method by Tracking Cycle-Accurate Activity Factors With Spark Streaming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Cross-Layer%20Dynamic%20Power%20Estimation%20Method%20by%20Tracking%20Cycle-Accurate%20Activity%20Factors%20With%20Spark%20Streaming&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Jin,%20Leilei&rft.date=2022-04-01&rft.volume=30&rft.issue=4&rft.spage=353&rft.epage=364&rft.pages=353-364&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TVLSI.2021.3111000&rft_dat=%3Cproquest_RIE%3E2641995082%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641995082&rft_id=info:pmid/&rft_ieee_id=9537919&rfr_iscdi=true