Tear the Image Into Strips for Style Transfer

Recently, Deep Convolutional Neural Networks (DCNNs) have achieved remarkable progress in computer vision community, including in style transfer tasks. Normally, most methods feed the full image to the DCNN. Although high-quality results can be achieved in this manner, several underlying problems ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2022, Vol.24, p.3978-3988
Hauptverfasser: Huang, Yujie, Liu, Yuhao, Jing, Minge, Zeng, Xiaoyang, Fan, Yibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3988
container_issue
container_start_page 3978
container_title IEEE transactions on multimedia
container_volume 24
creator Huang, Yujie
Liu, Yuhao
Jing, Minge
Zeng, Xiaoyang
Fan, Yibo
description Recently, Deep Convolutional Neural Networks (DCNNs) have achieved remarkable progress in computer vision community, including in style transfer tasks. Normally, most methods feed the full image to the DCNN. Although high-quality results can be achieved in this manner, several underlying problems arise. For one, with the increase in image resolution, the memory footprint will increase dramatically, leading to high latency and massive power consumption. Furthermore, these methods are usually unable to integrate with the commercial image signal processor (ISP), which processes the image in a line-sequential manner. To solve the above problems, we propose a novel ISP-friendly deep learning-based style transfer algorithm: SequentialStyle. A brand new line-sequential processing mode is proposed, where the image is torn into strips, and each strip is sequentially processed, contributing to less memory demand. We further propose a Spatial-Temporal Synergistic (STS) mechanism that decouples the previously simplex 2-D image style transfer into spatial feature processing (in-strip) and temporal correlation transmission (in-between strips). Compared with the SOTA style transfer algorithms, experimental results show that our SequentialStyle is competitive. Besides, SequentialStyle has less demand for memory consumption, even for the images whose resolutions are 4 k or higher.
doi_str_mv 10.1109/TMM.2021.3111515
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9537652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9537652</ieee_id><sourcerecordid>2700415396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-973a9a4b01e3b321f59d5217bd8e7292b25bde4fb62459ec8fb0098730b10f173</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbxs4nlxZrrd0qMhfpBAPLiem5adKgRYbJcD_94SiJeZ9_C8M8kjxD3CCBHMUzOfjwgIRxIRFaoLMUBTYQmg9WXOiqA0hHAtblJaAWClQA9E2bCLRf_DxXTjvvPc9l3x2cflLhWhizke1lw00W1T4HgrroJbJ74776H4en1pJu_l7ONtOnmelQsy2JdGS2dc5QFZekkYlGkVofbtmDUZ8qR8y1XwNVXK8GIcPIAZawkeIaCWQ_F4uruL3e-eU29X3T5u80tLGqBCJU2dKThRi9ilFDnYXVxuXDxYBHuUYrMUe5Riz1Jy5eFUWTLzP26U1LUi-QcQ-Vqb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700415396</pqid></control><display><type>article</type><title>Tear the Image Into Strips for Style Transfer</title><source>IEEE Xplore</source><creator>Huang, Yujie ; Liu, Yuhao ; Jing, Minge ; Zeng, Xiaoyang ; Fan, Yibo</creator><creatorcontrib>Huang, Yujie ; Liu, Yuhao ; Jing, Minge ; Zeng, Xiaoyang ; Fan, Yibo</creatorcontrib><description>Recently, Deep Convolutional Neural Networks (DCNNs) have achieved remarkable progress in computer vision community, including in style transfer tasks. Normally, most methods feed the full image to the DCNN. Although high-quality results can be achieved in this manner, several underlying problems arise. For one, with the increase in image resolution, the memory footprint will increase dramatically, leading to high latency and massive power consumption. Furthermore, these methods are usually unable to integrate with the commercial image signal processor (ISP), which processes the image in a line-sequential manner. To solve the above problems, we propose a novel ISP-friendly deep learning-based style transfer algorithm: SequentialStyle. A brand new line-sequential processing mode is proposed, where the image is torn into strips, and each strip is sequentially processed, contributing to less memory demand. We further propose a Spatial-Temporal Synergistic (STS) mechanism that decouples the previously simplex 2-D image style transfer into spatial feature processing (in-strip) and temporal correlation transmission (in-between strips). Compared with the SOTA style transfer algorithms, experimental results show that our SequentialStyle is competitive. Besides, SequentialStyle has less demand for memory consumption, even for the images whose resolutions are 4 k or higher.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3111515</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computer vision ; Correlation ; Deep Learning ; Image quality ; Image resolution ; Image Signal Processor ; Machine learning ; Memory management ; Microprocessors ; Pipelines ; Power consumption ; Signal processing ; Signal processing algorithms ; Strip ; Strips ; Style Transfer ; Task analysis</subject><ispartof>IEEE transactions on multimedia, 2022, Vol.24, p.3978-3988</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-973a9a4b01e3b321f59d5217bd8e7292b25bde4fb62459ec8fb0098730b10f173</citedby><cites>FETCH-LOGICAL-c291t-973a9a4b01e3b321f59d5217bd8e7292b25bde4fb62459ec8fb0098730b10f173</cites><orcidid>0000-0001-7934-7872 ; 0000-0003-2523-8261 ; 0000-0003-0550-4788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9537652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9537652$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Yujie</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Jing, Minge</creatorcontrib><creatorcontrib>Zeng, Xiaoyang</creatorcontrib><creatorcontrib>Fan, Yibo</creatorcontrib><title>Tear the Image Into Strips for Style Transfer</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Recently, Deep Convolutional Neural Networks (DCNNs) have achieved remarkable progress in computer vision community, including in style transfer tasks. Normally, most methods feed the full image to the DCNN. Although high-quality results can be achieved in this manner, several underlying problems arise. For one, with the increase in image resolution, the memory footprint will increase dramatically, leading to high latency and massive power consumption. Furthermore, these methods are usually unable to integrate with the commercial image signal processor (ISP), which processes the image in a line-sequential manner. To solve the above problems, we propose a novel ISP-friendly deep learning-based style transfer algorithm: SequentialStyle. A brand new line-sequential processing mode is proposed, where the image is torn into strips, and each strip is sequentially processed, contributing to less memory demand. We further propose a Spatial-Temporal Synergistic (STS) mechanism that decouples the previously simplex 2-D image style transfer into spatial feature processing (in-strip) and temporal correlation transmission (in-between strips). Compared with the SOTA style transfer algorithms, experimental results show that our SequentialStyle is competitive. Besides, SequentialStyle has less demand for memory consumption, even for the images whose resolutions are 4 k or higher.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Correlation</subject><subject>Deep Learning</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>Image Signal Processor</subject><subject>Machine learning</subject><subject>Memory management</subject><subject>Microprocessors</subject><subject>Pipelines</subject><subject>Power consumption</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Strip</subject><subject>Strips</subject><subject>Style Transfer</subject><subject>Task analysis</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYjeTbxs4nlxZrrd0qMhfpBAPLiem5adKgRYbJcD_94SiJeZ9_C8M8kjxD3CCBHMUzOfjwgIRxIRFaoLMUBTYQmg9WXOiqA0hHAtblJaAWClQA9E2bCLRf_DxXTjvvPc9l3x2cflLhWhizke1lw00W1T4HgrroJbJ74776H4en1pJu_l7ONtOnmelQsy2JdGS2dc5QFZekkYlGkVofbtmDUZ8qR8y1XwNVXK8GIcPIAZawkeIaCWQ_F4uruL3e-eU29X3T5u80tLGqBCJU2dKThRi9ilFDnYXVxuXDxYBHuUYrMUe5Riz1Jy5eFUWTLzP26U1LUi-QcQ-Vqb</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Yujie</creator><creator>Liu, Yuhao</creator><creator>Jing, Minge</creator><creator>Zeng, Xiaoyang</creator><creator>Fan, Yibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7934-7872</orcidid><orcidid>https://orcid.org/0000-0003-2523-8261</orcidid><orcidid>https://orcid.org/0000-0003-0550-4788</orcidid></search><sort><creationdate>2022</creationdate><title>Tear the Image Into Strips for Style Transfer</title><author>Huang, Yujie ; Liu, Yuhao ; Jing, Minge ; Zeng, Xiaoyang ; Fan, Yibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-973a9a4b01e3b321f59d5217bd8e7292b25bde4fb62459ec8fb0098730b10f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Correlation</topic><topic>Deep Learning</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>Image Signal Processor</topic><topic>Machine learning</topic><topic>Memory management</topic><topic>Microprocessors</topic><topic>Pipelines</topic><topic>Power consumption</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Strip</topic><topic>Strips</topic><topic>Style Transfer</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yujie</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Jing, Minge</creatorcontrib><creatorcontrib>Zeng, Xiaoyang</creatorcontrib><creatorcontrib>Fan, Yibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Yujie</au><au>Liu, Yuhao</au><au>Jing, Minge</au><au>Zeng, Xiaoyang</au><au>Fan, Yibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tear the Image Into Strips for Style Transfer</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2022</date><risdate>2022</risdate><volume>24</volume><spage>3978</spage><epage>3988</epage><pages>3978-3988</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Recently, Deep Convolutional Neural Networks (DCNNs) have achieved remarkable progress in computer vision community, including in style transfer tasks. Normally, most methods feed the full image to the DCNN. Although high-quality results can be achieved in this manner, several underlying problems arise. For one, with the increase in image resolution, the memory footprint will increase dramatically, leading to high latency and massive power consumption. Furthermore, these methods are usually unable to integrate with the commercial image signal processor (ISP), which processes the image in a line-sequential manner. To solve the above problems, we propose a novel ISP-friendly deep learning-based style transfer algorithm: SequentialStyle. A brand new line-sequential processing mode is proposed, where the image is torn into strips, and each strip is sequentially processed, contributing to less memory demand. We further propose a Spatial-Temporal Synergistic (STS) mechanism that decouples the previously simplex 2-D image style transfer into spatial feature processing (in-strip) and temporal correlation transmission (in-between strips). Compared with the SOTA style transfer algorithms, experimental results show that our SequentialStyle is competitive. Besides, SequentialStyle has less demand for memory consumption, even for the images whose resolutions are 4 k or higher.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3111515</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7934-7872</orcidid><orcidid>https://orcid.org/0000-0003-2523-8261</orcidid><orcidid>https://orcid.org/0000-0003-0550-4788</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2022, Vol.24, p.3978-3988
issn 1520-9210
1941-0077
language eng
recordid cdi_ieee_primary_9537652
source IEEE Xplore
subjects Algorithms
Artificial neural networks
Computer vision
Correlation
Deep Learning
Image quality
Image resolution
Image Signal Processor
Machine learning
Memory management
Microprocessors
Pipelines
Power consumption
Signal processing
Signal processing algorithms
Strip
Strips
Style Transfer
Task analysis
title Tear the Image Into Strips for Style Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tear%20the%20Image%20Into%20Strips%20for%20Style%20Transfer&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Huang,%20Yujie&rft.date=2022&rft.volume=24&rft.spage=3978&rft.epage=3988&rft.pages=3978-3988&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3111515&rft_dat=%3Cproquest_RIE%3E2700415396%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700415396&rft_id=info:pmid/&rft_ieee_id=9537652&rfr_iscdi=true