Tear the Image Into Strips for Style Transfer
Recently, Deep Convolutional Neural Networks (DCNNs) have achieved remarkable progress in computer vision community, including in style transfer tasks. Normally, most methods feed the full image to the DCNN. Although high-quality results can be achieved in this manner, several underlying problems ar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2022, Vol.24, p.3978-3988 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3988 |
---|---|
container_issue | |
container_start_page | 3978 |
container_title | IEEE transactions on multimedia |
container_volume | 24 |
creator | Huang, Yujie Liu, Yuhao Jing, Minge Zeng, Xiaoyang Fan, Yibo |
description | Recently, Deep Convolutional Neural Networks (DCNNs) have achieved remarkable progress in computer vision community, including in style transfer tasks. Normally, most methods feed the full image to the DCNN. Although high-quality results can be achieved in this manner, several underlying problems arise. For one, with the increase in image resolution, the memory footprint will increase dramatically, leading to high latency and massive power consumption. Furthermore, these methods are usually unable to integrate with the commercial image signal processor (ISP), which processes the image in a line-sequential manner. To solve the above problems, we propose a novel ISP-friendly deep learning-based style transfer algorithm: SequentialStyle. A brand new line-sequential processing mode is proposed, where the image is torn into strips, and each strip is sequentially processed, contributing to less memory demand. We further propose a Spatial-Temporal Synergistic (STS) mechanism that decouples the previously simplex 2-D image style transfer into spatial feature processing (in-strip) and temporal correlation transmission (in-between strips). Compared with the SOTA style transfer algorithms, experimental results show that our SequentialStyle is competitive. Besides, SequentialStyle has less demand for memory consumption, even for the images whose resolutions are 4 k or higher. |
doi_str_mv | 10.1109/TMM.2021.3111515 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9537652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9537652</ieee_id><sourcerecordid>2700415396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-973a9a4b01e3b321f59d5217bd8e7292b25bde4fb62459ec8fb0098730b10f173</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbxs4nlxZrrd0qMhfpBAPLiem5adKgRYbJcD_94SiJeZ9_C8M8kjxD3CCBHMUzOfjwgIRxIRFaoLMUBTYQmg9WXOiqA0hHAtblJaAWClQA9E2bCLRf_DxXTjvvPc9l3x2cflLhWhizke1lw00W1T4HgrroJbJ74776H4en1pJu_l7ONtOnmelQsy2JdGS2dc5QFZekkYlGkVofbtmDUZ8qR8y1XwNVXK8GIcPIAZawkeIaCWQ_F4uruL3e-eU29X3T5u80tLGqBCJU2dKThRi9ilFDnYXVxuXDxYBHuUYrMUe5Riz1Jy5eFUWTLzP26U1LUi-QcQ-Vqb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700415396</pqid></control><display><type>article</type><title>Tear the Image Into Strips for Style Transfer</title><source>IEEE Xplore</source><creator>Huang, Yujie ; Liu, Yuhao ; Jing, Minge ; Zeng, Xiaoyang ; Fan, Yibo</creator><creatorcontrib>Huang, Yujie ; Liu, Yuhao ; Jing, Minge ; Zeng, Xiaoyang ; Fan, Yibo</creatorcontrib><description>Recently, Deep Convolutional Neural Networks (DCNNs) have achieved remarkable progress in computer vision community, including in style transfer tasks. Normally, most methods feed the full image to the DCNN. Although high-quality results can be achieved in this manner, several underlying problems arise. For one, with the increase in image resolution, the memory footprint will increase dramatically, leading to high latency and massive power consumption. Furthermore, these methods are usually unable to integrate with the commercial image signal processor (ISP), which processes the image in a line-sequential manner. To solve the above problems, we propose a novel ISP-friendly deep learning-based style transfer algorithm: SequentialStyle. A brand new line-sequential processing mode is proposed, where the image is torn into strips, and each strip is sequentially processed, contributing to less memory demand. We further propose a Spatial-Temporal Synergistic (STS) mechanism that decouples the previously simplex 2-D image style transfer into spatial feature processing (in-strip) and temporal correlation transmission (in-between strips). Compared with the SOTA style transfer algorithms, experimental results show that our SequentialStyle is competitive. Besides, SequentialStyle has less demand for memory consumption, even for the images whose resolutions are 4 k or higher.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3111515</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computer vision ; Correlation ; Deep Learning ; Image quality ; Image resolution ; Image Signal Processor ; Machine learning ; Memory management ; Microprocessors ; Pipelines ; Power consumption ; Signal processing ; Signal processing algorithms ; Strip ; Strips ; Style Transfer ; Task analysis</subject><ispartof>IEEE transactions on multimedia, 2022, Vol.24, p.3978-3988</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-973a9a4b01e3b321f59d5217bd8e7292b25bde4fb62459ec8fb0098730b10f173</citedby><cites>FETCH-LOGICAL-c291t-973a9a4b01e3b321f59d5217bd8e7292b25bde4fb62459ec8fb0098730b10f173</cites><orcidid>0000-0001-7934-7872 ; 0000-0003-2523-8261 ; 0000-0003-0550-4788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9537652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9537652$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Yujie</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Jing, Minge</creatorcontrib><creatorcontrib>Zeng, Xiaoyang</creatorcontrib><creatorcontrib>Fan, Yibo</creatorcontrib><title>Tear the Image Into Strips for Style Transfer</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Recently, Deep Convolutional Neural Networks (DCNNs) have achieved remarkable progress in computer vision community, including in style transfer tasks. Normally, most methods feed the full image to the DCNN. Although high-quality results can be achieved in this manner, several underlying problems arise. For one, with the increase in image resolution, the memory footprint will increase dramatically, leading to high latency and massive power consumption. Furthermore, these methods are usually unable to integrate with the commercial image signal processor (ISP), which processes the image in a line-sequential manner. To solve the above problems, we propose a novel ISP-friendly deep learning-based style transfer algorithm: SequentialStyle. A brand new line-sequential processing mode is proposed, where the image is torn into strips, and each strip is sequentially processed, contributing to less memory demand. We further propose a Spatial-Temporal Synergistic (STS) mechanism that decouples the previously simplex 2-D image style transfer into spatial feature processing (in-strip) and temporal correlation transmission (in-between strips). Compared with the SOTA style transfer algorithms, experimental results show that our SequentialStyle is competitive. Besides, SequentialStyle has less demand for memory consumption, even for the images whose resolutions are 4 k or higher.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Correlation</subject><subject>Deep Learning</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>Image Signal Processor</subject><subject>Machine learning</subject><subject>Memory management</subject><subject>Microprocessors</subject><subject>Pipelines</subject><subject>Power consumption</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Strip</subject><subject>Strips</subject><subject>Style Transfer</subject><subject>Task analysis</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYjeTbxs4nlxZrrd0qMhfpBAPLiem5adKgRYbJcD_94SiJeZ9_C8M8kjxD3CCBHMUzOfjwgIRxIRFaoLMUBTYQmg9WXOiqA0hHAtblJaAWClQA9E2bCLRf_DxXTjvvPc9l3x2cflLhWhizke1lw00W1T4HgrroJbJ74776H4en1pJu_l7ONtOnmelQsy2JdGS2dc5QFZekkYlGkVofbtmDUZ8qR8y1XwNVXK8GIcPIAZawkeIaCWQ_F4uruL3e-eU29X3T5u80tLGqBCJU2dKThRi9ilFDnYXVxuXDxYBHuUYrMUe5Riz1Jy5eFUWTLzP26U1LUi-QcQ-Vqb</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Yujie</creator><creator>Liu, Yuhao</creator><creator>Jing, Minge</creator><creator>Zeng, Xiaoyang</creator><creator>Fan, Yibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7934-7872</orcidid><orcidid>https://orcid.org/0000-0003-2523-8261</orcidid><orcidid>https://orcid.org/0000-0003-0550-4788</orcidid></search><sort><creationdate>2022</creationdate><title>Tear the Image Into Strips for Style Transfer</title><author>Huang, Yujie ; Liu, Yuhao ; Jing, Minge ; Zeng, Xiaoyang ; Fan, Yibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-973a9a4b01e3b321f59d5217bd8e7292b25bde4fb62459ec8fb0098730b10f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Correlation</topic><topic>Deep Learning</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>Image Signal Processor</topic><topic>Machine learning</topic><topic>Memory management</topic><topic>Microprocessors</topic><topic>Pipelines</topic><topic>Power consumption</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Strip</topic><topic>Strips</topic><topic>Style Transfer</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yujie</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Jing, Minge</creatorcontrib><creatorcontrib>Zeng, Xiaoyang</creatorcontrib><creatorcontrib>Fan, Yibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Yujie</au><au>Liu, Yuhao</au><au>Jing, Minge</au><au>Zeng, Xiaoyang</au><au>Fan, Yibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tear the Image Into Strips for Style Transfer</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2022</date><risdate>2022</risdate><volume>24</volume><spage>3978</spage><epage>3988</epage><pages>3978-3988</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Recently, Deep Convolutional Neural Networks (DCNNs) have achieved remarkable progress in computer vision community, including in style transfer tasks. Normally, most methods feed the full image to the DCNN. Although high-quality results can be achieved in this manner, several underlying problems arise. For one, with the increase in image resolution, the memory footprint will increase dramatically, leading to high latency and massive power consumption. Furthermore, these methods are usually unable to integrate with the commercial image signal processor (ISP), which processes the image in a line-sequential manner. To solve the above problems, we propose a novel ISP-friendly deep learning-based style transfer algorithm: SequentialStyle. A brand new line-sequential processing mode is proposed, where the image is torn into strips, and each strip is sequentially processed, contributing to less memory demand. We further propose a Spatial-Temporal Synergistic (STS) mechanism that decouples the previously simplex 2-D image style transfer into spatial feature processing (in-strip) and temporal correlation transmission (in-between strips). Compared with the SOTA style transfer algorithms, experimental results show that our SequentialStyle is competitive. Besides, SequentialStyle has less demand for memory consumption, even for the images whose resolutions are 4 k or higher.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3111515</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7934-7872</orcidid><orcidid>https://orcid.org/0000-0003-2523-8261</orcidid><orcidid>https://orcid.org/0000-0003-0550-4788</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2022, Vol.24, p.3978-3988 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_9537652 |
source | IEEE Xplore |
subjects | Algorithms Artificial neural networks Computer vision Correlation Deep Learning Image quality Image resolution Image Signal Processor Machine learning Memory management Microprocessors Pipelines Power consumption Signal processing Signal processing algorithms Strip Strips Style Transfer Task analysis |
title | Tear the Image Into Strips for Style Transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tear%20the%20Image%20Into%20Strips%20for%20Style%20Transfer&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Huang,%20Yujie&rft.date=2022&rft.volume=24&rft.spage=3978&rft.epage=3988&rft.pages=3978-3988&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3111515&rft_dat=%3Cproquest_RIE%3E2700415396%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700415396&rft_id=info:pmid/&rft_ieee_id=9537652&rfr_iscdi=true |