Bimodal Characterization of Breast Biopsy Tissues Using MEMS-Based Biochips: Toward Improved Tumor Delineation
Disordered systems are governed by scaling laws that provide a quantifiable description of the system. Recently such laws have been used to describe the growth of cancer cells, suggesting their wide range of applications. In this study, two modes of electrical transport in formalin-fixed paired brea...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-11, Vol.21 (21), p.24801-24811 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24811 |
---|---|
container_issue | 21 |
container_start_page | 24801 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Vishnu, G. K. Anil Sakorikar, Tushar Baby, Arun Singh, Chandramani Rangarajan, Annapoorni Pandya, Hardik J. |
description | Disordered systems are governed by scaling laws that provide a quantifiable description of the system. Recently such laws have been used to describe the growth of cancer cells, suggesting their wide range of applications. In this study, two modes of electrical transport in formalin-fixed paired breast tissue samples are modeled using scaling laws. MEMS-based biochips with interdigitated electrodes and a microheater are integrated with a table-top platform to develop a bimodal tissue characterization system. The system is used to perform temperature and frequency-dependent electrical transport studies on breast biopsies. Temperature-dependent direct current (DC) transport is modeled under the realm of general effective medium theory. Critical temperature ( {T}_{c} ) as a model fit parameter is higher for adjacent normal (42.8 ± 2.0 °C) compared to tumor (36.5 ± 0.9 °C), indicating an early transition from conducting to the insulating regime in tumor tissues. Frequency-dependenti alternating current (AC) transport follows the scaling law, which is the characteristic of disordered systems and growth in biological systems. The parameter onset frequency {f}_{c} is higher for adjacent normal (1.1 ± 0.37 MHz) than the tumor (33.5 ± 14.9 kHz), indicating higher disorder in tumor samples. Further, the value of the fit exponent in the AC conduction regime is higher for tumor tissue, confirming higher disorder in the tumor. The utility of the model fit parameters in classifying samples as tumor and normal is demonstrated using a support vector machine (SVM) classifier, which showed 91.7% accuracy when compared to 70% as obtained for the raw data. |
doi_str_mv | 10.1109/JSEN.2021.3112602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9536762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9536762</ieee_id><sourcerecordid>2588070229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2747a93d3617cfb18e51621e964799af3fc018d6cd01dcb31366efdc831a1af63</originalsourceid><addsrcrecordid>eNo9UE1PwjAYbowmIvoDjJcmnod9263dvDlExYAeGIm3pXSdlLB1tkODv95NjKf3TZ7PPAhdAhkBkOTmeTF5GVFCYcQAKCf0CA0giuIARBgf9z8jQcjE2yk6835DCCQiEgNUp6ayhdzi8Vo6qVrtzLdsja2xLXHqtPQtTo1t_B5nxvud9njpTf2O55P5Ikil10WPq7Vp_C3O7Jd0BZ5WjbOfHZLtKuvwvd6aWv-6nqOTUm69vvi7Q7R8mGTjp2D2-jgd380CRRPWBlSEQiasYByEKlcQ6wg4BZ3wUCSJLFmpCMQFVwWBQq0YMM51WaiYgQRZcjZE1wffrshHV7rNN3bn6i4yp1EcE0FoFzREcGApZ713uswbZyrp9jmQvJ8172fN-1nzv1k7zdVBY7TW__wkYlxwyn4A6VN0CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588070229</pqid></control><display><type>article</type><title>Bimodal Characterization of Breast Biopsy Tissues Using MEMS-Based Biochips: Toward Improved Tumor Delineation</title><source>IEEE Electronic Library (IEL)</source><creator>Vishnu, G. K. Anil ; Sakorikar, Tushar ; Baby, Arun ; Singh, Chandramani ; Rangarajan, Annapoorni ; Pandya, Hardik J.</creator><creatorcontrib>Vishnu, G. K. Anil ; Sakorikar, Tushar ; Baby, Arun ; Singh, Chandramani ; Rangarajan, Annapoorni ; Pandya, Hardik J.</creatorcontrib><description><![CDATA[Disordered systems are governed by scaling laws that provide a quantifiable description of the system. Recently such laws have been used to describe the growth of cancer cells, suggesting their wide range of applications. In this study, two modes of electrical transport in formalin-fixed paired breast tissue samples are modeled using scaling laws. MEMS-based biochips with interdigitated electrodes and a microheater are integrated with a table-top platform to develop a bimodal tissue characterization system. The system is used to perform temperature and frequency-dependent electrical transport studies on breast biopsies. Temperature-dependent direct current (DC) transport is modeled under the realm of general effective medium theory. Critical temperature (<inline-formula> <tex-math notation="LaTeX">{T}_{c} </tex-math></inline-formula>) as a model fit parameter is higher for adjacent normal (42.8 ± 2.0 °C) compared to tumor (36.5 ± 0.9 °C), indicating an early transition from conducting to the insulating regime in tumor tissues. Frequency-dependenti alternating current (AC) transport follows the scaling law, which is the characteristic of disordered systems and growth in biological systems. The parameter onset frequency <inline-formula> <tex-math notation="LaTeX">{f}_{c} </tex-math></inline-formula> is higher for adjacent normal (1.1 ± 0.37 MHz) than the tumor (33.5 ± 14.9 kHz), indicating higher disorder in tumor samples. Further, the value of the fit exponent in the AC conduction regime is higher for tumor tissue, confirming higher disorder in the tumor. The utility of the model fit parameters in classifying samples as tumor and normal is demonstrated using a support vector machine (SVM) classifier, which showed 91.7% accuracy when compared to 70% as obtained for the raw data.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3112602</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternating current ; Biochip ; Biochips ; Biological system modeling ; Breast ; breast cancer ; Conduction ; Contacts ; Critical temperature ; Direct current ; Effective medium theory ; Electrodes ; electrothermal phenotyping ; mathematical modeling ; Mathematical models ; Parameters ; Scaling laws ; Sensors ; Support vector machines ; SVM classification ; Temperature dependence ; Tumors</subject><ispartof>IEEE sensors journal, 2021-11, Vol.21 (21), p.24801-24811</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2747a93d3617cfb18e51621e964799af3fc018d6cd01dcb31366efdc831a1af63</citedby><cites>FETCH-LOGICAL-c293t-2747a93d3617cfb18e51621e964799af3fc018d6cd01dcb31366efdc831a1af63</cites><orcidid>0000-0003-0348-0188 ; 0000-0001-9835-8323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9536762$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9536762$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vishnu, G. K. Anil</creatorcontrib><creatorcontrib>Sakorikar, Tushar</creatorcontrib><creatorcontrib>Baby, Arun</creatorcontrib><creatorcontrib>Singh, Chandramani</creatorcontrib><creatorcontrib>Rangarajan, Annapoorni</creatorcontrib><creatorcontrib>Pandya, Hardik J.</creatorcontrib><title>Bimodal Characterization of Breast Biopsy Tissues Using MEMS-Based Biochips: Toward Improved Tumor Delineation</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[Disordered systems are governed by scaling laws that provide a quantifiable description of the system. Recently such laws have been used to describe the growth of cancer cells, suggesting their wide range of applications. In this study, two modes of electrical transport in formalin-fixed paired breast tissue samples are modeled using scaling laws. MEMS-based biochips with interdigitated electrodes and a microheater are integrated with a table-top platform to develop a bimodal tissue characterization system. The system is used to perform temperature and frequency-dependent electrical transport studies on breast biopsies. Temperature-dependent direct current (DC) transport is modeled under the realm of general effective medium theory. Critical temperature (<inline-formula> <tex-math notation="LaTeX">{T}_{c} </tex-math></inline-formula>) as a model fit parameter is higher for adjacent normal (42.8 ± 2.0 °C) compared to tumor (36.5 ± 0.9 °C), indicating an early transition from conducting to the insulating regime in tumor tissues. Frequency-dependenti alternating current (AC) transport follows the scaling law, which is the characteristic of disordered systems and growth in biological systems. The parameter onset frequency <inline-formula> <tex-math notation="LaTeX">{f}_{c} </tex-math></inline-formula> is higher for adjacent normal (1.1 ± 0.37 MHz) than the tumor (33.5 ± 14.9 kHz), indicating higher disorder in tumor samples. Further, the value of the fit exponent in the AC conduction regime is higher for tumor tissue, confirming higher disorder in the tumor. The utility of the model fit parameters in classifying samples as tumor and normal is demonstrated using a support vector machine (SVM) classifier, which showed 91.7% accuracy when compared to 70% as obtained for the raw data.]]></description><subject>Alternating current</subject><subject>Biochip</subject><subject>Biochips</subject><subject>Biological system modeling</subject><subject>Breast</subject><subject>breast cancer</subject><subject>Conduction</subject><subject>Contacts</subject><subject>Critical temperature</subject><subject>Direct current</subject><subject>Effective medium theory</subject><subject>Electrodes</subject><subject>electrothermal phenotyping</subject><subject>mathematical modeling</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Scaling laws</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>SVM classification</subject><subject>Temperature dependence</subject><subject>Tumors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1PwjAYbowmIvoDjJcmnod9263dvDlExYAeGIm3pXSdlLB1tkODv95NjKf3TZ7PPAhdAhkBkOTmeTF5GVFCYcQAKCf0CA0giuIARBgf9z8jQcjE2yk6835DCCQiEgNUp6ayhdzi8Vo6qVrtzLdsja2xLXHqtPQtTo1t_B5nxvud9njpTf2O55P5Ikil10WPq7Vp_C3O7Jd0BZ5WjbOfHZLtKuvwvd6aWv-6nqOTUm69vvi7Q7R8mGTjp2D2-jgd380CRRPWBlSEQiasYByEKlcQ6wg4BZ3wUCSJLFmpCMQFVwWBQq0YMM51WaiYgQRZcjZE1wffrshHV7rNN3bn6i4yp1EcE0FoFzREcGApZ713uswbZyrp9jmQvJ8172fN-1nzv1k7zdVBY7TW__wkYlxwyn4A6VN0CQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Vishnu, G. K. Anil</creator><creator>Sakorikar, Tushar</creator><creator>Baby, Arun</creator><creator>Singh, Chandramani</creator><creator>Rangarajan, Annapoorni</creator><creator>Pandya, Hardik J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0348-0188</orcidid><orcidid>https://orcid.org/0000-0001-9835-8323</orcidid></search><sort><creationdate>20211101</creationdate><title>Bimodal Characterization of Breast Biopsy Tissues Using MEMS-Based Biochips: Toward Improved Tumor Delineation</title><author>Vishnu, G. K. Anil ; Sakorikar, Tushar ; Baby, Arun ; Singh, Chandramani ; Rangarajan, Annapoorni ; Pandya, Hardik J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2747a93d3617cfb18e51621e964799af3fc018d6cd01dcb31366efdc831a1af63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternating current</topic><topic>Biochip</topic><topic>Biochips</topic><topic>Biological system modeling</topic><topic>Breast</topic><topic>breast cancer</topic><topic>Conduction</topic><topic>Contacts</topic><topic>Critical temperature</topic><topic>Direct current</topic><topic>Effective medium theory</topic><topic>Electrodes</topic><topic>electrothermal phenotyping</topic><topic>mathematical modeling</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Scaling laws</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>SVM classification</topic><topic>Temperature dependence</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishnu, G. K. Anil</creatorcontrib><creatorcontrib>Sakorikar, Tushar</creatorcontrib><creatorcontrib>Baby, Arun</creatorcontrib><creatorcontrib>Singh, Chandramani</creatorcontrib><creatorcontrib>Rangarajan, Annapoorni</creatorcontrib><creatorcontrib>Pandya, Hardik J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vishnu, G. K. Anil</au><au>Sakorikar, Tushar</au><au>Baby, Arun</au><au>Singh, Chandramani</au><au>Rangarajan, Annapoorni</au><au>Pandya, Hardik J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimodal Characterization of Breast Biopsy Tissues Using MEMS-Based Biochips: Toward Improved Tumor Delineation</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>21</volume><issue>21</issue><spage>24801</spage><epage>24811</epage><pages>24801-24811</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[Disordered systems are governed by scaling laws that provide a quantifiable description of the system. Recently such laws have been used to describe the growth of cancer cells, suggesting their wide range of applications. In this study, two modes of electrical transport in formalin-fixed paired breast tissue samples are modeled using scaling laws. MEMS-based biochips with interdigitated electrodes and a microheater are integrated with a table-top platform to develop a bimodal tissue characterization system. The system is used to perform temperature and frequency-dependent electrical transport studies on breast biopsies. Temperature-dependent direct current (DC) transport is modeled under the realm of general effective medium theory. Critical temperature (<inline-formula> <tex-math notation="LaTeX">{T}_{c} </tex-math></inline-formula>) as a model fit parameter is higher for adjacent normal (42.8 ± 2.0 °C) compared to tumor (36.5 ± 0.9 °C), indicating an early transition from conducting to the insulating regime in tumor tissues. Frequency-dependenti alternating current (AC) transport follows the scaling law, which is the characteristic of disordered systems and growth in biological systems. The parameter onset frequency <inline-formula> <tex-math notation="LaTeX">{f}_{c} </tex-math></inline-formula> is higher for adjacent normal (1.1 ± 0.37 MHz) than the tumor (33.5 ± 14.9 kHz), indicating higher disorder in tumor samples. Further, the value of the fit exponent in the AC conduction regime is higher for tumor tissue, confirming higher disorder in the tumor. The utility of the model fit parameters in classifying samples as tumor and normal is demonstrated using a support vector machine (SVM) classifier, which showed 91.7% accuracy when compared to 70% as obtained for the raw data.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3112602</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0348-0188</orcidid><orcidid>https://orcid.org/0000-0001-9835-8323</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-11, Vol.21 (21), p.24801-24811 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9536762 |
source | IEEE Electronic Library (IEL) |
subjects | Alternating current Biochip Biochips Biological system modeling Breast breast cancer Conduction Contacts Critical temperature Direct current Effective medium theory Electrodes electrothermal phenotyping mathematical modeling Mathematical models Parameters Scaling laws Sensors Support vector machines SVM classification Temperature dependence Tumors |
title | Bimodal Characterization of Breast Biopsy Tissues Using MEMS-Based Biochips: Toward Improved Tumor Delineation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimodal%20Characterization%20of%20Breast%20Biopsy%20Tissues%20Using%20MEMS-Based%20Biochips:%20Toward%20Improved%20Tumor%20Delineation&rft.jtitle=IEEE%20sensors%20journal&rft.au=Vishnu,%20G.%20K.%20Anil&rft.date=2021-11-01&rft.volume=21&rft.issue=21&rft.spage=24801&rft.epage=24811&rft.pages=24801-24811&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3112602&rft_dat=%3Cproquest_RIE%3E2588070229%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588070229&rft_id=info:pmid/&rft_ieee_id=9536762&rfr_iscdi=true |