Collaborative Pushing and Grasping of Tightly Stacked Objects via Deep Reinforcement Learning
Directly grasping the tightly stacked objects may cause collisions and result in failures, degenerating the functionality of robotic arms. Inspired by the observation that first pushing objects to a state of mutual separation and then grasping them individually can effectively increase the success r...
Gespeichert in:
Veröffentlicht in: | IEEE/CAA journal of automatica sinica 2022-01, Vol.9 (1), p.135-145 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Directly grasping the tightly stacked objects may cause collisions and result in failures, degenerating the functionality of robotic arms. Inspired by the observation that first pushing objects to a state of mutual separation and then grasping them individually can effectively increase the success rate, we devise a novel deep Q-learning framework to achieve collaborative pushing and grasping. Specifically, an efficient non-maximum suppression policy (policyNMS) is proposed to dynamically evaluate pushing and grasping actions by enforcing a suppression constraint on unreasonable actions. Moreover, a novel data-driven pushing reward network called PR-Net is designed to effectively assess the degree of separation or aggregation between objects. To benchmark the proposed method, we establish a dataset containing common household items dataset (CHID) in both simulation and real scenarios. Although trained using simulation data only, experiment results validate that our method generalizes well to real scenarios and achieves a 97% grasp success rate at a fast speed for object separation in the real-world environment. |
---|---|
ISSN: | 2329-9266 2329-9274 |
DOI: | 10.1109/JAS.2021.1004255 |