Efficient Datalog Rewriting for Query Answering in TGD Ontologies

Tuple-generating dependencies (TGDs) are an expressive constraint language for ontology-mediated query answering and thus query answering is of high complexity. Existing systems based on first-order rewriting methods can lead to queries too large for DBMS to handle. It is shown that Datalog rewritin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-03, Vol.35 (3), p.2515-2528
Hauptverfasser: Wang, Zhe, Xiao, Peng, Wang, Kewen, Zhuang, Zhiqiang, Wan, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2528
container_issue 3
container_start_page 2515
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Wang, Zhe
Xiao, Peng
Wang, Kewen
Zhuang, Zhiqiang
Wan, Hai
description Tuple-generating dependencies (TGDs) are an expressive constraint language for ontology-mediated query answering and thus query answering is of high complexity. Existing systems based on first-order rewriting methods can lead to queries too large for DBMS to handle. It is shown that Datalog rewriting can result in more compact queries, yet previously proposed Datalog rewriting methods are mostly inefficient for implementation. In this paper, we fill the gap by proposing an efficient Datalog rewriting approach for answering conjunctive queries over TGDs, and identify and combine existing fragments of TGDs for which our rewriting method terminates. We implemented a prototype system Drewer, and experiments show that it is able to handle a wide range of benchmarks in the literature. Moreover, Drewer shows superior performance over state-of-the-art systems on both the compactness of rewriting and the efficiency of query answering.
doi_str_mv 10.1109/TKDE.2021.3111011
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9536432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9536432</ieee_id><sourcerecordid>2773454036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-5a89dc32da01829e470d7597756ddbbb0fad269b128885cfc9e3c497af2f4ad3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zk48muRzbnOJgKL0PaZuMjNnOpGPs3y9lw6tzeHnec-BB6BnwBACrt_JrvpgQTGBCIQUAN2gEnMucgILbtGMGOaNM3KOHGLcYYykkjNB04ZyvvW37bG56s-s22Y89Bt_7dpO5LmTfBxtO2bSNRxuGzLdZuZxn67bvEuxtfER3zuyifbrOMSrfF-XsI1-tl5-z6SqviZR9zo1UTU1JYzBIoiwTuBFcCcGLpqmqCjvTkEJVkGjJa1crS2umhHHEMdPQMXq9nN2H7u9gY6-33SG06aMmQlDGGaZFouBC1aGLMVin98H_mnDSgPUgSg-i9CBKX0Wlzsul4621_7zitGCU0DMxwWNm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773454036</pqid></control><display><type>article</type><title>Efficient Datalog Rewriting for Query Answering in TGD Ontologies</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zhe ; Xiao, Peng ; Wang, Kewen ; Zhuang, Zhiqiang ; Wan, Hai</creator><creatorcontrib>Wang, Zhe ; Xiao, Peng ; Wang, Kewen ; Zhuang, Zhiqiang ; Wan, Hai</creatorcontrib><description>Tuple-generating dependencies (TGDs) are an expressive constraint language for ontology-mediated query answering and thus query answering is of high complexity. Existing systems based on first-order rewriting methods can lead to queries too large for DBMS to handle. It is shown that Datalog rewriting can result in more compact queries, yet previously proposed Datalog rewriting methods are mostly inefficient for implementation. In this paper, we fill the gap by proposing an efficient Datalog rewriting approach for answering conjunctive queries over TGDs, and identify and combine existing fragments of TGDs for which our rewriting method terminates. We implemented a prototype system Drewer, and experiments show that it is able to handle a wide range of benchmarks in the literature. Moreover, Drewer shows superior performance over state-of-the-art systems on both the compactness of rewriting and the efficiency of query answering.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2021.3111011</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmark testing ; Engines ; existential rules ; Ontologies ; ontology ; Optimization ; OWL ; Prototypes ; Queries ; Query languages ; Query rewriting ; Transforms ; tuple-generating dependency</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-03, Vol.35 (3), p.2515-2528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-5a89dc32da01829e470d7597756ddbbb0fad269b128885cfc9e3c497af2f4ad3</cites><orcidid>0000-0002-1367-7139 ; 0000-0002-0542-3761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9536432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9536432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Xiao, Peng</creatorcontrib><creatorcontrib>Wang, Kewen</creatorcontrib><creatorcontrib>Zhuang, Zhiqiang</creatorcontrib><creatorcontrib>Wan, Hai</creatorcontrib><title>Efficient Datalog Rewriting for Query Answering in TGD Ontologies</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Tuple-generating dependencies (TGDs) are an expressive constraint language for ontology-mediated query answering and thus query answering is of high complexity. Existing systems based on first-order rewriting methods can lead to queries too large for DBMS to handle. It is shown that Datalog rewriting can result in more compact queries, yet previously proposed Datalog rewriting methods are mostly inefficient for implementation. In this paper, we fill the gap by proposing an efficient Datalog rewriting approach for answering conjunctive queries over TGDs, and identify and combine existing fragments of TGDs for which our rewriting method terminates. We implemented a prototype system Drewer, and experiments show that it is able to handle a wide range of benchmarks in the literature. Moreover, Drewer shows superior performance over state-of-the-art systems on both the compactness of rewriting and the efficiency of query answering.</description><subject>Benchmark testing</subject><subject>Engines</subject><subject>existential rules</subject><subject>Ontologies</subject><subject>ontology</subject><subject>Optimization</subject><subject>OWL</subject><subject>Prototypes</subject><subject>Queries</subject><subject>Query languages</subject><subject>Query rewriting</subject><subject>Transforms</subject><subject>tuple-generating dependency</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zk48muRzbnOJgKL0PaZuMjNnOpGPs3y9lw6tzeHnec-BB6BnwBACrt_JrvpgQTGBCIQUAN2gEnMucgILbtGMGOaNM3KOHGLcYYykkjNB04ZyvvW37bG56s-s22Y89Bt_7dpO5LmTfBxtO2bSNRxuGzLdZuZxn67bvEuxtfER3zuyifbrOMSrfF-XsI1-tl5-z6SqviZR9zo1UTU1JYzBIoiwTuBFcCcGLpqmqCjvTkEJVkGjJa1crS2umhHHEMdPQMXq9nN2H7u9gY6-33SG06aMmQlDGGaZFouBC1aGLMVin98H_mnDSgPUgSg-i9CBKX0Wlzsul4621_7zitGCU0DMxwWNm</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wang, Zhe</creator><creator>Xiao, Peng</creator><creator>Wang, Kewen</creator><creator>Zhuang, Zhiqiang</creator><creator>Wan, Hai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1367-7139</orcidid><orcidid>https://orcid.org/0000-0002-0542-3761</orcidid></search><sort><creationdate>20230301</creationdate><title>Efficient Datalog Rewriting for Query Answering in TGD Ontologies</title><author>Wang, Zhe ; Xiao, Peng ; Wang, Kewen ; Zhuang, Zhiqiang ; Wan, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-5a89dc32da01829e470d7597756ddbbb0fad269b128885cfc9e3c497af2f4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmark testing</topic><topic>Engines</topic><topic>existential rules</topic><topic>Ontologies</topic><topic>ontology</topic><topic>Optimization</topic><topic>OWL</topic><topic>Prototypes</topic><topic>Queries</topic><topic>Query languages</topic><topic>Query rewriting</topic><topic>Transforms</topic><topic>tuple-generating dependency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Xiao, Peng</creatorcontrib><creatorcontrib>Wang, Kewen</creatorcontrib><creatorcontrib>Zhuang, Zhiqiang</creatorcontrib><creatorcontrib>Wan, Hai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhe</au><au>Xiao, Peng</au><au>Wang, Kewen</au><au>Zhuang, Zhiqiang</au><au>Wan, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Datalog Rewriting for Query Answering in TGD Ontologies</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><spage>2515</spage><epage>2528</epage><pages>2515-2528</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Tuple-generating dependencies (TGDs) are an expressive constraint language for ontology-mediated query answering and thus query answering is of high complexity. Existing systems based on first-order rewriting methods can lead to queries too large for DBMS to handle. It is shown that Datalog rewriting can result in more compact queries, yet previously proposed Datalog rewriting methods are mostly inefficient for implementation. In this paper, we fill the gap by proposing an efficient Datalog rewriting approach for answering conjunctive queries over TGDs, and identify and combine existing fragments of TGDs for which our rewriting method terminates. We implemented a prototype system Drewer, and experiments show that it is able to handle a wide range of benchmarks in the literature. Moreover, Drewer shows superior performance over state-of-the-art systems on both the compactness of rewriting and the efficiency of query answering.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2021.3111011</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1367-7139</orcidid><orcidid>https://orcid.org/0000-0002-0542-3761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-03, Vol.35 (3), p.2515-2528
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_9536432
source IEEE Electronic Library (IEL)
subjects Benchmark testing
Engines
existential rules
Ontologies
ontology
Optimization
OWL
Prototypes
Queries
Query languages
Query rewriting
Transforms
tuple-generating dependency
title Efficient Datalog Rewriting for Query Answering in TGD Ontologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Datalog%20Rewriting%20for%20Query%20Answering%20in%20TGD%20Ontologies&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wang,%20Zhe&rft.date=2023-03-01&rft.volume=35&rft.issue=3&rft.spage=2515&rft.epage=2528&rft.pages=2515-2528&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2021.3111011&rft_dat=%3Cproquest_RIE%3E2773454036%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773454036&rft_id=info:pmid/&rft_ieee_id=9536432&rfr_iscdi=true