Efficient Datalog Rewriting for Query Answering in TGD Ontologies
Tuple-generating dependencies (TGDs) are an expressive constraint language for ontology-mediated query answering and thus query answering is of high complexity. Existing systems based on first-order rewriting methods can lead to queries too large for DBMS to handle. It is shown that Datalog rewritin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-03, Vol.35 (3), p.2515-2528 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2528 |
---|---|
container_issue | 3 |
container_start_page | 2515 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Wang, Zhe Xiao, Peng Wang, Kewen Zhuang, Zhiqiang Wan, Hai |
description | Tuple-generating dependencies (TGDs) are an expressive constraint language for ontology-mediated query answering and thus query answering is of high complexity. Existing systems based on first-order rewriting methods can lead to queries too large for DBMS to handle. It is shown that Datalog rewriting can result in more compact queries, yet previously proposed Datalog rewriting methods are mostly inefficient for implementation. In this paper, we fill the gap by proposing an efficient Datalog rewriting approach for answering conjunctive queries over TGDs, and identify and combine existing fragments of TGDs for which our rewriting method terminates. We implemented a prototype system Drewer, and experiments show that it is able to handle a wide range of benchmarks in the literature. Moreover, Drewer shows superior performance over state-of-the-art systems on both the compactness of rewriting and the efficiency of query answering. |
doi_str_mv | 10.1109/TKDE.2021.3111011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9536432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9536432</ieee_id><sourcerecordid>2773454036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-5a89dc32da01829e470d7597756ddbbb0fad269b128885cfc9e3c497af2f4ad3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zk48muRzbnOJgKL0PaZuMjNnOpGPs3y9lw6tzeHnec-BB6BnwBACrt_JrvpgQTGBCIQUAN2gEnMucgILbtGMGOaNM3KOHGLcYYykkjNB04ZyvvW37bG56s-s22Y89Bt_7dpO5LmTfBxtO2bSNRxuGzLdZuZxn67bvEuxtfER3zuyifbrOMSrfF-XsI1-tl5-z6SqviZR9zo1UTU1JYzBIoiwTuBFcCcGLpqmqCjvTkEJVkGjJa1crS2umhHHEMdPQMXq9nN2H7u9gY6-33SG06aMmQlDGGaZFouBC1aGLMVin98H_mnDSgPUgSg-i9CBKX0Wlzsul4621_7zitGCU0DMxwWNm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773454036</pqid></control><display><type>article</type><title>Efficient Datalog Rewriting for Query Answering in TGD Ontologies</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zhe ; Xiao, Peng ; Wang, Kewen ; Zhuang, Zhiqiang ; Wan, Hai</creator><creatorcontrib>Wang, Zhe ; Xiao, Peng ; Wang, Kewen ; Zhuang, Zhiqiang ; Wan, Hai</creatorcontrib><description>Tuple-generating dependencies (TGDs) are an expressive constraint language for ontology-mediated query answering and thus query answering is of high complexity. Existing systems based on first-order rewriting methods can lead to queries too large for DBMS to handle. It is shown that Datalog rewriting can result in more compact queries, yet previously proposed Datalog rewriting methods are mostly inefficient for implementation. In this paper, we fill the gap by proposing an efficient Datalog rewriting approach for answering conjunctive queries over TGDs, and identify and combine existing fragments of TGDs for which our rewriting method terminates. We implemented a prototype system Drewer, and experiments show that it is able to handle a wide range of benchmarks in the literature. Moreover, Drewer shows superior performance over state-of-the-art systems on both the compactness of rewriting and the efficiency of query answering.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2021.3111011</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmark testing ; Engines ; existential rules ; Ontologies ; ontology ; Optimization ; OWL ; Prototypes ; Queries ; Query languages ; Query rewriting ; Transforms ; tuple-generating dependency</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-03, Vol.35 (3), p.2515-2528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-5a89dc32da01829e470d7597756ddbbb0fad269b128885cfc9e3c497af2f4ad3</cites><orcidid>0000-0002-1367-7139 ; 0000-0002-0542-3761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9536432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9536432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Xiao, Peng</creatorcontrib><creatorcontrib>Wang, Kewen</creatorcontrib><creatorcontrib>Zhuang, Zhiqiang</creatorcontrib><creatorcontrib>Wan, Hai</creatorcontrib><title>Efficient Datalog Rewriting for Query Answering in TGD Ontologies</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Tuple-generating dependencies (TGDs) are an expressive constraint language for ontology-mediated query answering and thus query answering is of high complexity. Existing systems based on first-order rewriting methods can lead to queries too large for DBMS to handle. It is shown that Datalog rewriting can result in more compact queries, yet previously proposed Datalog rewriting methods are mostly inefficient for implementation. In this paper, we fill the gap by proposing an efficient Datalog rewriting approach for answering conjunctive queries over TGDs, and identify and combine existing fragments of TGDs for which our rewriting method terminates. We implemented a prototype system Drewer, and experiments show that it is able to handle a wide range of benchmarks in the literature. Moreover, Drewer shows superior performance over state-of-the-art systems on both the compactness of rewriting and the efficiency of query answering.</description><subject>Benchmark testing</subject><subject>Engines</subject><subject>existential rules</subject><subject>Ontologies</subject><subject>ontology</subject><subject>Optimization</subject><subject>OWL</subject><subject>Prototypes</subject><subject>Queries</subject><subject>Query languages</subject><subject>Query rewriting</subject><subject>Transforms</subject><subject>tuple-generating dependency</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zk48muRzbnOJgKL0PaZuMjNnOpGPs3y9lw6tzeHnec-BB6BnwBACrt_JrvpgQTGBCIQUAN2gEnMucgILbtGMGOaNM3KOHGLcYYykkjNB04ZyvvW37bG56s-s22Y89Bt_7dpO5LmTfBxtO2bSNRxuGzLdZuZxn67bvEuxtfER3zuyifbrOMSrfF-XsI1-tl5-z6SqviZR9zo1UTU1JYzBIoiwTuBFcCcGLpqmqCjvTkEJVkGjJa1crS2umhHHEMdPQMXq9nN2H7u9gY6-33SG06aMmQlDGGaZFouBC1aGLMVin98H_mnDSgPUgSg-i9CBKX0Wlzsul4621_7zitGCU0DMxwWNm</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wang, Zhe</creator><creator>Xiao, Peng</creator><creator>Wang, Kewen</creator><creator>Zhuang, Zhiqiang</creator><creator>Wan, Hai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1367-7139</orcidid><orcidid>https://orcid.org/0000-0002-0542-3761</orcidid></search><sort><creationdate>20230301</creationdate><title>Efficient Datalog Rewriting for Query Answering in TGD Ontologies</title><author>Wang, Zhe ; Xiao, Peng ; Wang, Kewen ; Zhuang, Zhiqiang ; Wan, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-5a89dc32da01829e470d7597756ddbbb0fad269b128885cfc9e3c497af2f4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmark testing</topic><topic>Engines</topic><topic>existential rules</topic><topic>Ontologies</topic><topic>ontology</topic><topic>Optimization</topic><topic>OWL</topic><topic>Prototypes</topic><topic>Queries</topic><topic>Query languages</topic><topic>Query rewriting</topic><topic>Transforms</topic><topic>tuple-generating dependency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Xiao, Peng</creatorcontrib><creatorcontrib>Wang, Kewen</creatorcontrib><creatorcontrib>Zhuang, Zhiqiang</creatorcontrib><creatorcontrib>Wan, Hai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhe</au><au>Xiao, Peng</au><au>Wang, Kewen</au><au>Zhuang, Zhiqiang</au><au>Wan, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Datalog Rewriting for Query Answering in TGD Ontologies</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><spage>2515</spage><epage>2528</epage><pages>2515-2528</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Tuple-generating dependencies (TGDs) are an expressive constraint language for ontology-mediated query answering and thus query answering is of high complexity. Existing systems based on first-order rewriting methods can lead to queries too large for DBMS to handle. It is shown that Datalog rewriting can result in more compact queries, yet previously proposed Datalog rewriting methods are mostly inefficient for implementation. In this paper, we fill the gap by proposing an efficient Datalog rewriting approach for answering conjunctive queries over TGDs, and identify and combine existing fragments of TGDs for which our rewriting method terminates. We implemented a prototype system Drewer, and experiments show that it is able to handle a wide range of benchmarks in the literature. Moreover, Drewer shows superior performance over state-of-the-art systems on both the compactness of rewriting and the efficiency of query answering.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2021.3111011</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1367-7139</orcidid><orcidid>https://orcid.org/0000-0002-0542-3761</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-03, Vol.35 (3), p.2515-2528 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_9536432 |
source | IEEE Electronic Library (IEL) |
subjects | Benchmark testing Engines existential rules Ontologies ontology Optimization OWL Prototypes Queries Query languages Query rewriting Transforms tuple-generating dependency |
title | Efficient Datalog Rewriting for Query Answering in TGD Ontologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Datalog%20Rewriting%20for%20Query%20Answering%20in%20TGD%20Ontologies&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wang,%20Zhe&rft.date=2023-03-01&rft.volume=35&rft.issue=3&rft.spage=2515&rft.epage=2528&rft.pages=2515-2528&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2021.3111011&rft_dat=%3Cproquest_RIE%3E2773454036%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773454036&rft_id=info:pmid/&rft_ieee_id=9536432&rfr_iscdi=true |