On Error Exponents of Encoder-Assisted Communication Systems
We consider a point-to-point communication system, where in addition to the encoder and the decoder, there is a helper that observes non-causally the realization of the noise vector and provides a (lossy) rate- {R}_{{ \text { h}}} description of it to the encoder ( {R}_{{ \text { h}}} < \infty...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-11, Vol.67 (11), p.7019-7029 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7029 |
---|---|
container_issue | 11 |
container_start_page | 7019 |
container_title | IEEE transactions on information theory |
container_volume | 67 |
creator | Merhav, Neri |
description | We consider a point-to-point communication system, where in addition to the encoder and the decoder, there is a helper that observes non-causally the realization of the noise vector and provides a (lossy) rate- {R}_{{ \text { h}}} description of it to the encoder ( {R}_{{ \text { h}}} < \infty ). In continuation to Lapidoth and Marti (2020), who derived the capacity of this model, here our focus is on error exponents. We consider both continuous-alphabet, additive white Gaussian channels and finite-alphabet, modulo-additive channels, and for each one of them, we study the cases of both fixed-rate and variable-rate noise descriptions by the helper. Our main finding is that, as long as the channel-coding rate, R, is below the helper-rate, {R}_{{ \text { h}}} , the achievable error exponent is unlimited (i.e., it can be made arbitrarily large), and in some of the cases, it is even strictly infinite (i.e., the error probability can be made strictly zero). However, in the range of coding rates ( {R}_{{ \text { h}}}, {R}_{{ \text { h}}}+ {C}_{0}) , C 0 being the ordinary channel capacity (without help), the best achievable error exponent is finite and strictly positive, although there is a certain gap between our upper bound (converse bound) and lower bound (achievability) on the highest achievable error exponent. This means that the model of encoder-assisted communication is essentially equivalent to a model, where in addition to the noisy channel between the encoder and decoder, there is also a parallel noiseless bit-pipe of capacity {R}_{{ \text { h}}} . We also extend the scope to the Gaussian multiple access channel (MAC) and characterize the rate sub-region, where the achievable error exponent is unlimited or even infinite. |
doi_str_mv | 10.1109/TIT.2021.3111541 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9535127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9535127</ieee_id><sourcerecordid>2583639401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9c9c120aee31375ad483f2884e875233e6518f31a52e6270a2c1bdebad1bb0983</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Sd_Uh2wUspUQuFHqznZbOZQIrJ1t0E7L93S4un4R2edwYeQh6BLgCoftmtdwtGGSw4AEgBV2QGUpa5LqS4JjNKQeVaCHVL7mLcpygksBl53Q5ZFYIPWfV78AMOY8x8m1WD8w2GfBljF0dsspXv-2nonB07P2Sfx7Ts4z25ae13xIfLnJOvt2q3-sg32_f1arnJHdMw5tppB4xaRA68lLYRirdMKYGqlIxzLCSoloOVDAtWUssc1A3WtoG6plrxOXk-3z0E_zNhHM3eT2FILw2TihdcCwqJomfKBR9jwNYcQtfbcDRAzcmRSY7MyZG5OEqVp3OlQ8R_XEue3JT8D6rFYTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583639401</pqid></control><display><type>article</type><title>On Error Exponents of Encoder-Assisted Communication Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Merhav, Neri</creator><creatorcontrib>Merhav, Neri</creatorcontrib><description><![CDATA[We consider a point-to-point communication system, where in addition to the encoder and the decoder, there is a helper that observes non-causally the realization of the noise vector and provides a (lossy) rate-<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula> description of it to the encoder (<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} < \infty </tex-math></inline-formula>). In continuation to Lapidoth and Marti (2020), who derived the capacity of this model, here our focus is on error exponents. We consider both continuous-alphabet, additive white Gaussian channels and finite-alphabet, modulo-additive channels, and for each one of them, we study the cases of both fixed-rate and variable-rate noise descriptions by the helper. Our main finding is that, as long as the channel-coding rate, R, is below the helper-rate, <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>, the achievable error exponent is unlimited (i.e., it can be made arbitrarily large), and in some of the cases, it is even strictly infinite (i.e., the error probability can be made strictly zero). However, in the range of coding rates <inline-formula> <tex-math notation="LaTeX">( {R}_{{ \text { h}}}, {R}_{{ \text { h}}}+ {C}_{0}) </tex-math></inline-formula>, C 0 being the ordinary channel capacity (without help), the best achievable error exponent is finite and strictly positive, although there is a certain gap between our upper bound (converse bound) and lower bound (achievability) on the highest achievable error exponent. This means that the model of encoder-assisted communication is essentially equivalent to a model, where in addition to the noisy channel between the encoder and decoder, there is also a parallel noiseless bit-pipe of capacity <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>. We also extend the scope to the Gaussian multiple access channel (MAC) and characterize the rate sub-region, where the achievable error exponent is unlimited or even infinite.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2021.3111541</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>additive channel ; Additives ; Alphabets ; AWGN channels ; Channel capacity ; Channels ; Coders ; Codes ; Coding ; Communication ; Communications systems ; Decoding ; encoder–assisted ; Encoding ; Error exponent ; Errors ; Exponents ; Indexes ; Lower bounds ; multiple–access channel ; Random variables ; sphere–packing ; Transmitters ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2021-11, Vol.67 (11), p.7019-7029</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9c9c120aee31375ad483f2884e875233e6518f31a52e6270a2c1bdebad1bb0983</citedby><cites>FETCH-LOGICAL-c291t-9c9c120aee31375ad483f2884e875233e6518f31a52e6270a2c1bdebad1bb0983</cites><orcidid>0000-0002-9547-3243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9535127$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9535127$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Merhav, Neri</creatorcontrib><title>On Error Exponents of Encoder-Assisted Communication Systems</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider a point-to-point communication system, where in addition to the encoder and the decoder, there is a helper that observes non-causally the realization of the noise vector and provides a (lossy) rate-<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula> description of it to the encoder (<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} < \infty </tex-math></inline-formula>). In continuation to Lapidoth and Marti (2020), who derived the capacity of this model, here our focus is on error exponents. We consider both continuous-alphabet, additive white Gaussian channels and finite-alphabet, modulo-additive channels, and for each one of them, we study the cases of both fixed-rate and variable-rate noise descriptions by the helper. Our main finding is that, as long as the channel-coding rate, R, is below the helper-rate, <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>, the achievable error exponent is unlimited (i.e., it can be made arbitrarily large), and in some of the cases, it is even strictly infinite (i.e., the error probability can be made strictly zero). However, in the range of coding rates <inline-formula> <tex-math notation="LaTeX">( {R}_{{ \text { h}}}, {R}_{{ \text { h}}}+ {C}_{0}) </tex-math></inline-formula>, C 0 being the ordinary channel capacity (without help), the best achievable error exponent is finite and strictly positive, although there is a certain gap between our upper bound (converse bound) and lower bound (achievability) on the highest achievable error exponent. This means that the model of encoder-assisted communication is essentially equivalent to a model, where in addition to the noisy channel between the encoder and decoder, there is also a parallel noiseless bit-pipe of capacity <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>. We also extend the scope to the Gaussian multiple access channel (MAC) and characterize the rate sub-region, where the achievable error exponent is unlimited or even infinite.]]></description><subject>additive channel</subject><subject>Additives</subject><subject>Alphabets</subject><subject>AWGN channels</subject><subject>Channel capacity</subject><subject>Channels</subject><subject>Coders</subject><subject>Codes</subject><subject>Coding</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Decoding</subject><subject>encoder–assisted</subject><subject>Encoding</subject><subject>Error exponent</subject><subject>Errors</subject><subject>Exponents</subject><subject>Indexes</subject><subject>Lower bounds</subject><subject>multiple–access channel</subject><subject>Random variables</subject><subject>sphere–packing</subject><subject>Transmitters</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Sd_Uh2wUspUQuFHqznZbOZQIrJ1t0E7L93S4un4R2edwYeQh6BLgCoftmtdwtGGSw4AEgBV2QGUpa5LqS4JjNKQeVaCHVL7mLcpygksBl53Q5ZFYIPWfV78AMOY8x8m1WD8w2GfBljF0dsspXv-2nonB07P2Sfx7Ts4z25ae13xIfLnJOvt2q3-sg32_f1arnJHdMw5tppB4xaRA68lLYRirdMKYGqlIxzLCSoloOVDAtWUssc1A3WtoG6plrxOXk-3z0E_zNhHM3eT2FILw2TihdcCwqJomfKBR9jwNYcQtfbcDRAzcmRSY7MyZG5OEqVp3OlQ8R_XEue3JT8D6rFYTo</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Merhav, Neri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9547-3243</orcidid></search><sort><creationdate>20211101</creationdate><title>On Error Exponents of Encoder-Assisted Communication Systems</title><author>Merhav, Neri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9c9c120aee31375ad483f2884e875233e6518f31a52e6270a2c1bdebad1bb0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>additive channel</topic><topic>Additives</topic><topic>Alphabets</topic><topic>AWGN channels</topic><topic>Channel capacity</topic><topic>Channels</topic><topic>Coders</topic><topic>Codes</topic><topic>Coding</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Decoding</topic><topic>encoder–assisted</topic><topic>Encoding</topic><topic>Error exponent</topic><topic>Errors</topic><topic>Exponents</topic><topic>Indexes</topic><topic>Lower bounds</topic><topic>multiple–access channel</topic><topic>Random variables</topic><topic>sphere–packing</topic><topic>Transmitters</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merhav, Neri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Merhav, Neri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Error Exponents of Encoder-Assisted Communication Systems</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>67</volume><issue>11</issue><spage>7019</spage><epage>7029</epage><pages>7019-7029</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider a point-to-point communication system, where in addition to the encoder and the decoder, there is a helper that observes non-causally the realization of the noise vector and provides a (lossy) rate-<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula> description of it to the encoder (<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} < \infty </tex-math></inline-formula>). In continuation to Lapidoth and Marti (2020), who derived the capacity of this model, here our focus is on error exponents. We consider both continuous-alphabet, additive white Gaussian channels and finite-alphabet, modulo-additive channels, and for each one of them, we study the cases of both fixed-rate and variable-rate noise descriptions by the helper. Our main finding is that, as long as the channel-coding rate, R, is below the helper-rate, <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>, the achievable error exponent is unlimited (i.e., it can be made arbitrarily large), and in some of the cases, it is even strictly infinite (i.e., the error probability can be made strictly zero). However, in the range of coding rates <inline-formula> <tex-math notation="LaTeX">( {R}_{{ \text { h}}}, {R}_{{ \text { h}}}+ {C}_{0}) </tex-math></inline-formula>, C 0 being the ordinary channel capacity (without help), the best achievable error exponent is finite and strictly positive, although there is a certain gap between our upper bound (converse bound) and lower bound (achievability) on the highest achievable error exponent. This means that the model of encoder-assisted communication is essentially equivalent to a model, where in addition to the noisy channel between the encoder and decoder, there is also a parallel noiseless bit-pipe of capacity <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>. We also extend the scope to the Gaussian multiple access channel (MAC) and characterize the rate sub-region, where the achievable error exponent is unlimited or even infinite.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2021.3111541</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9547-3243</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2021-11, Vol.67 (11), p.7019-7029 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_9535127 |
source | IEEE Electronic Library (IEL) |
subjects | additive channel Additives Alphabets AWGN channels Channel capacity Channels Coders Codes Coding Communication Communications systems Decoding encoder–assisted Encoding Error exponent Errors Exponents Indexes Lower bounds multiple–access channel Random variables sphere–packing Transmitters Upper bounds |
title | On Error Exponents of Encoder-Assisted Communication Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Error%20Exponents%20of%20Encoder-Assisted%20Communication%20Systems&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Merhav,%20Neri&rft.date=2021-11-01&rft.volume=67&rft.issue=11&rft.spage=7019&rft.epage=7029&rft.pages=7019-7029&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2021.3111541&rft_dat=%3Cproquest_RIE%3E2583639401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583639401&rft_id=info:pmid/&rft_ieee_id=9535127&rfr_iscdi=true |