On Error Exponents of Encoder-Assisted Communication Systems

We consider a point-to-point communication system, where in addition to the encoder and the decoder, there is a helper that observes non-causally the realization of the noise vector and provides a (lossy) rate- {R}_{{ \text { h}}} description of it to the encoder ( {R}_{{ \text { h}}} < \infty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2021-11, Vol.67 (11), p.7019-7029
1. Verfasser: Merhav, Neri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7029
container_issue 11
container_start_page 7019
container_title IEEE transactions on information theory
container_volume 67
creator Merhav, Neri
description We consider a point-to-point communication system, where in addition to the encoder and the decoder, there is a helper that observes non-causally the realization of the noise vector and provides a (lossy) rate- {R}_{{ \text { h}}} description of it to the encoder ( {R}_{{ \text { h}}} < \infty ). In continuation to Lapidoth and Marti (2020), who derived the capacity of this model, here our focus is on error exponents. We consider both continuous-alphabet, additive white Gaussian channels and finite-alphabet, modulo-additive channels, and for each one of them, we study the cases of both fixed-rate and variable-rate noise descriptions by the helper. Our main finding is that, as long as the channel-coding rate, R, is below the helper-rate, {R}_{{ \text { h}}} , the achievable error exponent is unlimited (i.e., it can be made arbitrarily large), and in some of the cases, it is even strictly infinite (i.e., the error probability can be made strictly zero). However, in the range of coding rates ( {R}_{{ \text { h}}}, {R}_{{ \text { h}}}+ {C}_{0}) , C 0 being the ordinary channel capacity (without help), the best achievable error exponent is finite and strictly positive, although there is a certain gap between our upper bound (converse bound) and lower bound (achievability) on the highest achievable error exponent. This means that the model of encoder-assisted communication is essentially equivalent to a model, where in addition to the noisy channel between the encoder and decoder, there is also a parallel noiseless bit-pipe of capacity {R}_{{ \text { h}}} . We also extend the scope to the Gaussian multiple access channel (MAC) and characterize the rate sub-region, where the achievable error exponent is unlimited or even infinite.
doi_str_mv 10.1109/TIT.2021.3111541
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9535127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9535127</ieee_id><sourcerecordid>2583639401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9c9c120aee31375ad483f2884e875233e6518f31a52e6270a2c1bdebad1bb0983</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Sd_Uh2wUspUQuFHqznZbOZQIrJ1t0E7L93S4un4R2edwYeQh6BLgCoftmtdwtGGSw4AEgBV2QGUpa5LqS4JjNKQeVaCHVL7mLcpygksBl53Q5ZFYIPWfV78AMOY8x8m1WD8w2GfBljF0dsspXv-2nonB07P2Sfx7Ts4z25ae13xIfLnJOvt2q3-sg32_f1arnJHdMw5tppB4xaRA68lLYRirdMKYGqlIxzLCSoloOVDAtWUssc1A3WtoG6plrxOXk-3z0E_zNhHM3eT2FILw2TihdcCwqJomfKBR9jwNYcQtfbcDRAzcmRSY7MyZG5OEqVp3OlQ8R_XEue3JT8D6rFYTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583639401</pqid></control><display><type>article</type><title>On Error Exponents of Encoder-Assisted Communication Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Merhav, Neri</creator><creatorcontrib>Merhav, Neri</creatorcontrib><description><![CDATA[We consider a point-to-point communication system, where in addition to the encoder and the decoder, there is a helper that observes non-causally the realization of the noise vector and provides a (lossy) rate-<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula> description of it to the encoder (<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} < \infty </tex-math></inline-formula>). In continuation to Lapidoth and Marti (2020), who derived the capacity of this model, here our focus is on error exponents. We consider both continuous-alphabet, additive white Gaussian channels and finite-alphabet, modulo-additive channels, and for each one of them, we study the cases of both fixed-rate and variable-rate noise descriptions by the helper. Our main finding is that, as long as the channel-coding rate, R, is below the helper-rate, <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>, the achievable error exponent is unlimited (i.e., it can be made arbitrarily large), and in some of the cases, it is even strictly infinite (i.e., the error probability can be made strictly zero). However, in the range of coding rates <inline-formula> <tex-math notation="LaTeX">( {R}_{{ \text { h}}}, {R}_{{ \text { h}}}+ {C}_{0}) </tex-math></inline-formula>, C 0 being the ordinary channel capacity (without help), the best achievable error exponent is finite and strictly positive, although there is a certain gap between our upper bound (converse bound) and lower bound (achievability) on the highest achievable error exponent. This means that the model of encoder-assisted communication is essentially equivalent to a model, where in addition to the noisy channel between the encoder and decoder, there is also a parallel noiseless bit-pipe of capacity <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>. We also extend the scope to the Gaussian multiple access channel (MAC) and characterize the rate sub-region, where the achievable error exponent is unlimited or even infinite.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2021.3111541</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>additive channel ; Additives ; Alphabets ; AWGN channels ; Channel capacity ; Channels ; Coders ; Codes ; Coding ; Communication ; Communications systems ; Decoding ; encoder–assisted ; Encoding ; Error exponent ; Errors ; Exponents ; Indexes ; Lower bounds ; multiple–access channel ; Random variables ; sphere–packing ; Transmitters ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2021-11, Vol.67 (11), p.7019-7029</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9c9c120aee31375ad483f2884e875233e6518f31a52e6270a2c1bdebad1bb0983</citedby><cites>FETCH-LOGICAL-c291t-9c9c120aee31375ad483f2884e875233e6518f31a52e6270a2c1bdebad1bb0983</cites><orcidid>0000-0002-9547-3243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9535127$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9535127$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Merhav, Neri</creatorcontrib><title>On Error Exponents of Encoder-Assisted Communication Systems</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider a point-to-point communication system, where in addition to the encoder and the decoder, there is a helper that observes non-causally the realization of the noise vector and provides a (lossy) rate-<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula> description of it to the encoder (<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} < \infty </tex-math></inline-formula>). In continuation to Lapidoth and Marti (2020), who derived the capacity of this model, here our focus is on error exponents. We consider both continuous-alphabet, additive white Gaussian channels and finite-alphabet, modulo-additive channels, and for each one of them, we study the cases of both fixed-rate and variable-rate noise descriptions by the helper. Our main finding is that, as long as the channel-coding rate, R, is below the helper-rate, <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>, the achievable error exponent is unlimited (i.e., it can be made arbitrarily large), and in some of the cases, it is even strictly infinite (i.e., the error probability can be made strictly zero). However, in the range of coding rates <inline-formula> <tex-math notation="LaTeX">( {R}_{{ \text { h}}}, {R}_{{ \text { h}}}+ {C}_{0}) </tex-math></inline-formula>, C 0 being the ordinary channel capacity (without help), the best achievable error exponent is finite and strictly positive, although there is a certain gap between our upper bound (converse bound) and lower bound (achievability) on the highest achievable error exponent. This means that the model of encoder-assisted communication is essentially equivalent to a model, where in addition to the noisy channel between the encoder and decoder, there is also a parallel noiseless bit-pipe of capacity <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>. We also extend the scope to the Gaussian multiple access channel (MAC) and characterize the rate sub-region, where the achievable error exponent is unlimited or even infinite.]]></description><subject>additive channel</subject><subject>Additives</subject><subject>Alphabets</subject><subject>AWGN channels</subject><subject>Channel capacity</subject><subject>Channels</subject><subject>Coders</subject><subject>Codes</subject><subject>Coding</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Decoding</subject><subject>encoder–assisted</subject><subject>Encoding</subject><subject>Error exponent</subject><subject>Errors</subject><subject>Exponents</subject><subject>Indexes</subject><subject>Lower bounds</subject><subject>multiple–access channel</subject><subject>Random variables</subject><subject>sphere–packing</subject><subject>Transmitters</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Sd_Uh2wUspUQuFHqznZbOZQIrJ1t0E7L93S4un4R2edwYeQh6BLgCoftmtdwtGGSw4AEgBV2QGUpa5LqS4JjNKQeVaCHVL7mLcpygksBl53Q5ZFYIPWfV78AMOY8x8m1WD8w2GfBljF0dsspXv-2nonB07P2Sfx7Ts4z25ae13xIfLnJOvt2q3-sg32_f1arnJHdMw5tppB4xaRA68lLYRirdMKYGqlIxzLCSoloOVDAtWUssc1A3WtoG6plrxOXk-3z0E_zNhHM3eT2FILw2TihdcCwqJomfKBR9jwNYcQtfbcDRAzcmRSY7MyZG5OEqVp3OlQ8R_XEue3JT8D6rFYTo</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Merhav, Neri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9547-3243</orcidid></search><sort><creationdate>20211101</creationdate><title>On Error Exponents of Encoder-Assisted Communication Systems</title><author>Merhav, Neri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9c9c120aee31375ad483f2884e875233e6518f31a52e6270a2c1bdebad1bb0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>additive channel</topic><topic>Additives</topic><topic>Alphabets</topic><topic>AWGN channels</topic><topic>Channel capacity</topic><topic>Channels</topic><topic>Coders</topic><topic>Codes</topic><topic>Coding</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Decoding</topic><topic>encoder–assisted</topic><topic>Encoding</topic><topic>Error exponent</topic><topic>Errors</topic><topic>Exponents</topic><topic>Indexes</topic><topic>Lower bounds</topic><topic>multiple–access channel</topic><topic>Random variables</topic><topic>sphere–packing</topic><topic>Transmitters</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merhav, Neri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Merhav, Neri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Error Exponents of Encoder-Assisted Communication Systems</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>67</volume><issue>11</issue><spage>7019</spage><epage>7029</epage><pages>7019-7029</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider a point-to-point communication system, where in addition to the encoder and the decoder, there is a helper that observes non-causally the realization of the noise vector and provides a (lossy) rate-<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula> description of it to the encoder (<inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} < \infty </tex-math></inline-formula>). In continuation to Lapidoth and Marti (2020), who derived the capacity of this model, here our focus is on error exponents. We consider both continuous-alphabet, additive white Gaussian channels and finite-alphabet, modulo-additive channels, and for each one of them, we study the cases of both fixed-rate and variable-rate noise descriptions by the helper. Our main finding is that, as long as the channel-coding rate, R, is below the helper-rate, <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>, the achievable error exponent is unlimited (i.e., it can be made arbitrarily large), and in some of the cases, it is even strictly infinite (i.e., the error probability can be made strictly zero). However, in the range of coding rates <inline-formula> <tex-math notation="LaTeX">( {R}_{{ \text { h}}}, {R}_{{ \text { h}}}+ {C}_{0}) </tex-math></inline-formula>, C 0 being the ordinary channel capacity (without help), the best achievable error exponent is finite and strictly positive, although there is a certain gap between our upper bound (converse bound) and lower bound (achievability) on the highest achievable error exponent. This means that the model of encoder-assisted communication is essentially equivalent to a model, where in addition to the noisy channel between the encoder and decoder, there is also a parallel noiseless bit-pipe of capacity <inline-formula> <tex-math notation="LaTeX"> {R}_{{ \text { h}}} </tex-math></inline-formula>. We also extend the scope to the Gaussian multiple access channel (MAC) and characterize the rate sub-region, where the achievable error exponent is unlimited or even infinite.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2021.3111541</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9547-3243</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2021-11, Vol.67 (11), p.7019-7029
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9535127
source IEEE Electronic Library (IEL)
subjects additive channel
Additives
Alphabets
AWGN channels
Channel capacity
Channels
Coders
Codes
Coding
Communication
Communications systems
Decoding
encoder–assisted
Encoding
Error exponent
Errors
Exponents
Indexes
Lower bounds
multiple–access channel
Random variables
sphere–packing
Transmitters
Upper bounds
title On Error Exponents of Encoder-Assisted Communication Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Error%20Exponents%20of%20Encoder-Assisted%20Communication%20Systems&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Merhav,%20Neri&rft.date=2021-11-01&rft.volume=67&rft.issue=11&rft.spage=7019&rft.epage=7029&rft.pages=7019-7029&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2021.3111541&rft_dat=%3Cproquest_RIE%3E2583639401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583639401&rft_id=info:pmid/&rft_ieee_id=9535127&rfr_iscdi=true