Using dataflow based context for accurate value prediction
We explore the reasons behind the rather low prediction accuracy of existing data value predictors. Our studies show that contexts formed only from the outcomes of the last several instances of a static instruction do not always encapsulate all of the information required for correct prediction. Com...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | |
container_start_page | 107 |
container_title | |
container_volume | |
creator | Thomas, R. Franklin, M. |
description | We explore the reasons behind the rather low prediction accuracy of existing data value predictors. Our studies show that contexts formed only from the outcomes of the last several instances of a static instruction do not always encapsulate all of the information required for correct prediction. Complex interactions between data flow and control flow change the context in ways that result in predictability loss for a significant number of dynamic instructions. For improving the prediction accuracy, we propose the concept of using contexts derived from the predictable portions of the data flow graph. That is, the predictability of hard-to-predict instructions can be improved by taking advantage of the predictability of the easy-to-predict instructions that precede it in the data flow graph. We propose and investigate a run-time scheme for producing such an improved context from the predicted values of previous instructions. We also propose a novel predictor called dynamic dataflow-inherited speculative context (DDISC) based predictor for specifically predicting hard-to-predict instructions. Simulation results verify that the use of dataflow-based contexts yields significant improvements in prediction accuracies, ranging from, 35% to 99%. This translates to an overall prediction accuracy of 68% to 99.9%. |
doi_str_mv | 10.1109/PACT.2001.953292 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_953292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>953292</ieee_id><sourcerecordid>953292</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-b116e04c681be47defb4be464844aed55300def94428c1175418c083d5470a3b3</originalsourceid><addsrcrecordid>eNotj01Lw0AURQdUsNbuxdX8gcT3Mm8mM-5K0SoUdNGCuzKZeZFITEoy9ePfG6h3cw93ceAKcYOQI4K7e12utnkBgLnTqnDFmbiC0jiNyih7LmYI1mWlM2-XYjGOHzBFOQNAM3G_G5vuXUaffN3237LyI0cZ-i7xT5J1P0gfwnHwieWXb48sDwPHJqSm767FRe3bkRf_PRe7x4ft6inbvKyfV8tN1iBQyipEw0DBWKyYysh1RRMYskSeo9YKYBodUWEDYqkJbQCroqYSvKrUXNyevA0z7w9D8-mH3_3pqfoDkY5Gzg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using dataflow based context for accurate value prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Thomas, R. ; Franklin, M.</creator><creatorcontrib>Thomas, R. ; Franklin, M.</creatorcontrib><description>We explore the reasons behind the rather low prediction accuracy of existing data value predictors. Our studies show that contexts formed only from the outcomes of the last several instances of a static instruction do not always encapsulate all of the information required for correct prediction. Complex interactions between data flow and control flow change the context in ways that result in predictability loss for a significant number of dynamic instructions. For improving the prediction accuracy, we propose the concept of using contexts derived from the predictable portions of the data flow graph. That is, the predictability of hard-to-predict instructions can be improved by taking advantage of the predictability of the easy-to-predict instructions that precede it in the data flow graph. We propose and investigate a run-time scheme for producing such an improved context from the predicted values of previous instructions. We also propose a novel predictor called dynamic dataflow-inherited speculative context (DDISC) based predictor for specifically predicting hard-to-predict instructions. Simulation results verify that the use of dataflow-based contexts yields significant improvements in prediction accuracies, ranging from, 35% to 99%. This translates to an overall prediction accuracy of 68% to 99.9%.</description><identifier>ISSN: 1089-796X</identifier><identifier>ISBN: 0769513638</identifier><identifier>ISBN: 9780769513638</identifier><identifier>DOI: 10.1109/PACT.2001.953292</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Context modeling ; Counting circuits ; Data mining ; Educational institutions ; Flow graphs ; History ; Logic ; Predictive models ; Runtime</subject><ispartof>Proceedings 2001 International Conference on Parallel Architectures and Compilation Techniques, 2001, p.107-117</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/953292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/953292$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thomas, R.</creatorcontrib><creatorcontrib>Franklin, M.</creatorcontrib><title>Using dataflow based context for accurate value prediction</title><title>Proceedings 2001 International Conference on Parallel Architectures and Compilation Techniques</title><addtitle>PACT</addtitle><description>We explore the reasons behind the rather low prediction accuracy of existing data value predictors. Our studies show that contexts formed only from the outcomes of the last several instances of a static instruction do not always encapsulate all of the information required for correct prediction. Complex interactions between data flow and control flow change the context in ways that result in predictability loss for a significant number of dynamic instructions. For improving the prediction accuracy, we propose the concept of using contexts derived from the predictable portions of the data flow graph. That is, the predictability of hard-to-predict instructions can be improved by taking advantage of the predictability of the easy-to-predict instructions that precede it in the data flow graph. We propose and investigate a run-time scheme for producing such an improved context from the predicted values of previous instructions. We also propose a novel predictor called dynamic dataflow-inherited speculative context (DDISC) based predictor for specifically predicting hard-to-predict instructions. Simulation results verify that the use of dataflow-based contexts yields significant improvements in prediction accuracies, ranging from, 35% to 99%. This translates to an overall prediction accuracy of 68% to 99.9%.</description><subject>Accuracy</subject><subject>Context modeling</subject><subject>Counting circuits</subject><subject>Data mining</subject><subject>Educational institutions</subject><subject>Flow graphs</subject><subject>History</subject><subject>Logic</subject><subject>Predictive models</subject><subject>Runtime</subject><issn>1089-796X</issn><isbn>0769513638</isbn><isbn>9780769513638</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01Lw0AURQdUsNbuxdX8gcT3Mm8mM-5K0SoUdNGCuzKZeZFITEoy9ePfG6h3cw93ceAKcYOQI4K7e12utnkBgLnTqnDFmbiC0jiNyih7LmYI1mWlM2-XYjGOHzBFOQNAM3G_G5vuXUaffN3237LyI0cZ-i7xT5J1P0gfwnHwieWXb48sDwPHJqSm767FRe3bkRf_PRe7x4ft6inbvKyfV8tN1iBQyipEw0DBWKyYysh1RRMYskSeo9YKYBodUWEDYqkJbQCroqYSvKrUXNyevA0z7w9D8-mH3_3pqfoDkY5Gzg</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Thomas, R.</creator><creator>Franklin, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>Using dataflow based context for accurate value prediction</title><author>Thomas, R. ; Franklin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-b116e04c681be47defb4be464844aed55300def94428c1175418c083d5470a3b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accuracy</topic><topic>Context modeling</topic><topic>Counting circuits</topic><topic>Data mining</topic><topic>Educational institutions</topic><topic>Flow graphs</topic><topic>History</topic><topic>Logic</topic><topic>Predictive models</topic><topic>Runtime</topic><toplevel>online_resources</toplevel><creatorcontrib>Thomas, R.</creatorcontrib><creatorcontrib>Franklin, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thomas, R.</au><au>Franklin, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using dataflow based context for accurate value prediction</atitle><btitle>Proceedings 2001 International Conference on Parallel Architectures and Compilation Techniques</btitle><stitle>PACT</stitle><date>2001</date><risdate>2001</risdate><spage>107</spage><epage>117</epage><pages>107-117</pages><issn>1089-796X</issn><isbn>0769513638</isbn><isbn>9780769513638</isbn><abstract>We explore the reasons behind the rather low prediction accuracy of existing data value predictors. Our studies show that contexts formed only from the outcomes of the last several instances of a static instruction do not always encapsulate all of the information required for correct prediction. Complex interactions between data flow and control flow change the context in ways that result in predictability loss for a significant number of dynamic instructions. For improving the prediction accuracy, we propose the concept of using contexts derived from the predictable portions of the data flow graph. That is, the predictability of hard-to-predict instructions can be improved by taking advantage of the predictability of the easy-to-predict instructions that precede it in the data flow graph. We propose and investigate a run-time scheme for producing such an improved context from the predicted values of previous instructions. We also propose a novel predictor called dynamic dataflow-inherited speculative context (DDISC) based predictor for specifically predicting hard-to-predict instructions. Simulation results verify that the use of dataflow-based contexts yields significant improvements in prediction accuracies, ranging from, 35% to 99%. This translates to an overall prediction accuracy of 68% to 99.9%.</abstract><pub>IEEE</pub><doi>10.1109/PACT.2001.953292</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-796X |
ispartof | Proceedings 2001 International Conference on Parallel Architectures and Compilation Techniques, 2001, p.107-117 |
issn | 1089-796X |
language | eng |
recordid | cdi_ieee_primary_953292 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Context modeling Counting circuits Data mining Educational institutions Flow graphs History Logic Predictive models Runtime |
title | Using dataflow based context for accurate value prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20dataflow%20based%20context%20for%20accurate%20value%20prediction&rft.btitle=Proceedings%202001%20International%20Conference%20on%20Parallel%20Architectures%20and%20Compilation%20Techniques&rft.au=Thomas,%20R.&rft.date=2001&rft.spage=107&rft.epage=117&rft.pages=107-117&rft.issn=1089-796X&rft.isbn=0769513638&rft.isbn_list=9780769513638&rft_id=info:doi/10.1109/PACT.2001.953292&rft_dat=%3Cieee_6IE%3E953292%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=953292&rfr_iscdi=true |